
Plug-in Type Digital Indicating Conductivity Meter WIL-102-ECH (High Concentration)

Instruction Manual

Preface

Thank you for purchasing our WIL-102-ECH (High Concentration), Plug-in Type Digital Indicating Conductivity Meter.

This manual contains instructions for the mounting, functions, operations and notes when operating the WIL-102-ECH. To ensure safe and correct use, thoroughly read and understand this manual before using this instrument. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Indication	4	0	1	2	E	Ч	5	5	7	8	9	Ľ	F
Number, °C/°F	-1	0	1	2	3	4	5	6	7	8	9	°C	°F
Indication	8	Ь	C	ď	Ε	F	5	Н	1	ц	F	L	ā
Alphabet	А	В	С	D	Е	F	G	Н	I	J	К	L	М
Indication	n	D	Ρ	9	<i>_</i>	5	/	Ш	В	Ū	U i	Ч	111
Alphabet	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ

Characters Used in This Manual

▲ Caution

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow all of the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail within a control panel indoors. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos CO., LTD. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into 2 categories: "Warning" and "Caution". Depending on the circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

\land Caution

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

\land Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Meaning of Warning Message on Model Label

1 Caution

If do not handle this instrument correctly, may suffer minor or moderate injury or property damage due to fire, malfunction, or electric shock. Please read this manual carefully and fully understand it before using it.

Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

PRECAUTIONS

1. Installation Precautions

1 Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): • Overvoltage category II, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- · A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50 $^\circ C$ (32 to 122 $^\circ F)$ that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit
- If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit not the ambient temperature of the control panel must be kept under 50°C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

1 Caution

- Do not leave wire remnants in the instrument, as they could cause a fire and/or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the WIL-102-ECH.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of the WIL-102-ECH.
- Keep the input wires and power lines separate.

Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.
- Be sure to keep the cable dry and clean at all times.
- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
Е	Shield wire terminal 8

For the electrode with no temperature compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

3. Operation and Maintenance Precautions

1 Caution

- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument. (Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

4. Compliance with Safety Standards

1 Caution

- Always install the recommended fuse described in this manual externally.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
- Use equipment that is reinforced-insulated or double-insulated from the primary power supply for external circuits connected to this instrument.
- When using this product as a UL certified product, use a power supply conforming to Class 2 or LIM for the external circuit connected to the product.

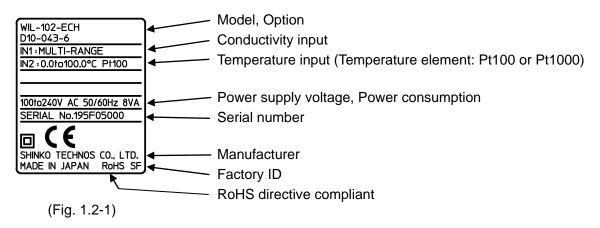
Contents

1. Model	7
1.1 Model	
1.2 How to Read the Model Label	7
2. Names and Functions of Instrument	
3. Mounting to the Control Panel	
3.1 Site Selection	
3.2 External Dimensions (Scale: mm)	
3.3 Mounting	
4. Removal	11
5. Wiring	
5.1 Lead Wire Solderless Terminal	
5.2 Terminal Arrangement	
5.3 Wire the Communication Line.	
6. Outline of Key Operation and Setting Groups	
6.1 Outline of Key Operation	
6.2 Setting Groups	
7. Key Operation Flowchart	
8. Setup	
8.1 Turn the Power Supply ON	
8.2 Conductivity Input Group	
8.3 Temperature Input Group	
8.4 Basic Function Group9. Calibration	
9.1 Conductivity Calibration Mode 9.2 Temperature Calibration Mode	
9.3 Transmission Output 1 Adjustment Mode	
9.4 Transmission Output 2 Adjustment Mode	
10. Measurement	
10.1 Starting Measurement	
10.2 A 🗆 Output	
10.3 Conductivity Input Error Alarm	
10.4 Error Output	
10.5 Fail Output	
10.6 Error Code during Measurement 10.7 Transmission Output 1 and 2	
11. Communication	
11.1 System Configuration Example	

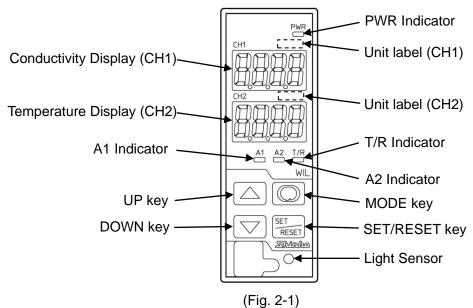
11.2 Setting Method of the Conductivity Meter	47
11.3 Communication Procedure	
11.4 Shinko Protocol	49
11.4.1 Transmission Mode	49
11.4.2 Command Configuration	49
11.4.3 Checksum Calculation	50
11.5 MODBUS Protocol	51
11.5.1 Transmission Mode	
11.5.2 Data Communication Interval	51
11.5.3 Message Configuration	51
11.5.4 Message Example	53
11.6 Communication Command Table	
11.6.1 Notes about Setting/Reading Command	
11.6.2 Setting/Reading Command	
11.6.3 Read Only Command	
11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments	
via Communication Command	
11.7.1 Conductivity Calibration	
11.7.2 Temperature Calibration	
11.7.3 Transmission Output 1 Adjustment	
11.7.4 Transmission Output 2 Adjustment	
11.8 Notes on Programming Monitoring Software	
11.8.1 How to Speed up the Scan Time	
11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation	
11.8.3 Note when Sending All Set Values Simultaneously	
12. Specifications	68
12.1 Standard Specifications	68
12.2 Optional Specifications	73
13. Troubleshooting	77
13.1 Indication	77
13.2 Key Operation	
13.3 Communication	
14. Temperature Compensation Method	79
14.1 Temperature Compensation Based on the Temperature Characteristics of NaCl	
14.2 How to Input Temperature Coefficient	
15. Character Tables	

1. Model

1.1 Model


WIL-10	2	-EC	Н		,		
Input Points	2					2 points	
logut		EC				4-electrode Conductivity Sensor (Temperature element: Pt100) (*1)	
Input		EC				4-electrode Conductivity Sensor (Temperature element: Pt1000) (*1)	
Concentration H				High concentration			
				100 to 240 V AC (standard)			
Power Supply Voltage 1		1		24 V AC/DC (*2)			
						EVT	A output (A11, A12, A21, A22)
Option		TA	Transmission output 1 (*3)				
		TA2	Transmission output 1, Transmission output 2				

(*1) This input temperature specification was specified at the time of ordering.


- (*2) Power supply voltage 100 to 240 V AC is standard.
- When ordering 24 V AC/DC, enter "1" in Power supply voltage after 'ECH'.
- (*3) If TA option is ordered, the EVT option (A1 output only) will be added.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

2. Names and Functions of Instrument

Displays

Conductivity Display	Conductivity, or characters in setting mode are indicated in red.
(CH1)	Indications differ depending on the selections in [Display selection (p.34)].
Temperature Display	Temperature, or values in setting mode are indicated in red.
(CH2)	Indications differ depending on the selections in [Display selection (p.34)].

Unit label (CH1)	Attach the user's unit of Conductivity Display (CH1) from the included unit			
	labels if necessary.			
Unit label (CH2)	Attach the user's unit of Temperature Display (CH2) from the included unit			
	labels if necessary.			

Action Indicators

PWR Indicator	When power supply to the instrument is turned ON, the yellow LED lights.	
A1 Indicator	When A1 output (Contact output 1) is ON, the red LED lights.	
	(Unlit if TA2 option is ordered.)	
A2 Indicator	When A2 output (Contact output 2) is ON, the yellow LED lights.	
	(Unlit if TA option or TA2 option is ordered.)	
T/R Indicator	The yellow LED lights during Serial communication TX output (transmitting).	

Key

UP key	Increases the numeric value.
DOWN key	Decreases the numeric value.
O MODE key	Selects a setting group.
SET/RESET key	Switches the setting modes, and registers the set value.

Light Sensor	Automatically measures and controls brightness of the Conductivity Display,				
	Temperature Display and Action indicators.				

▲ Notice

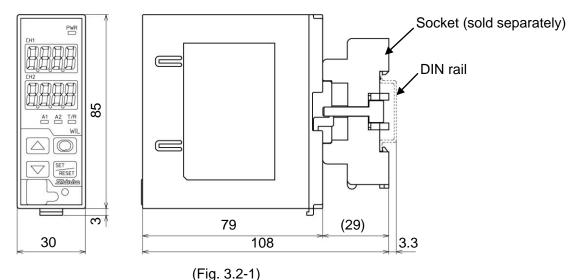
When setting the specifications and functions of this instrument, connect mains power cable to terminals 13 and 14 first, then set them referring from "6. Outline of Key Operation and Setting Groups" to "8. Setup (pp.16 to 38)" before performing "3. Mounting to the Control Panel (p.9)" and "5. Wiring (p.12)".

3. Mounting to the Control Panel

3.1 Site Selection

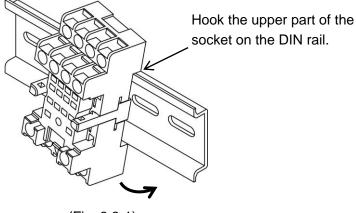
▲ Caution

Use within the following temperature and humidity ranges.


Temperature: 0 to 50° C (32 to 122° F) (No icing), Humidity: 35 to 85 %RH (Non-condensing) If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit – not the ambient temperature of the control panel – must be kept under 50° C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2

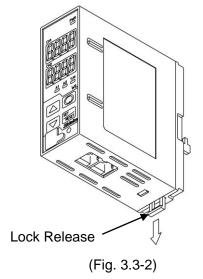
Ensure the mounting location corresponds to the following conditions:


- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50°C (32 to 122°F) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit

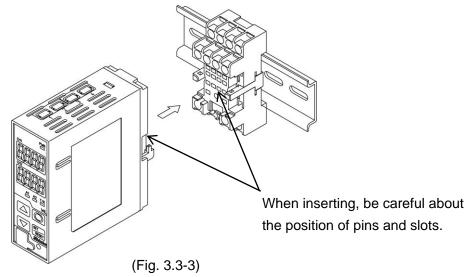
3.2 External Dimensions (Scale: mm)

3.3 Mounting

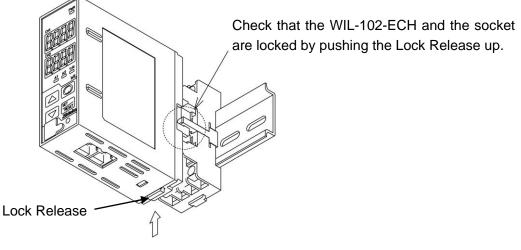
(1) Hook the upper part of the socket on the DIN rail, and mount it (A clicking sound is heard).



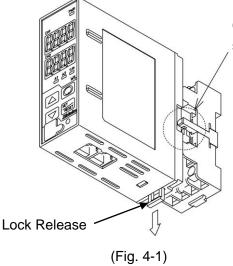
(Fig. 3.3-1)


$\underline{\mathbb{A}}$ Caution

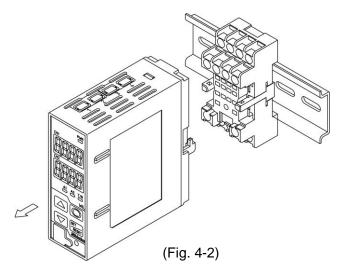
Before inserting the WIL-102-ECH into the socket, wire the unit. Refer to Section "5. Wiring" (p.12).


(2) Check that the Lock Release has been lowered.

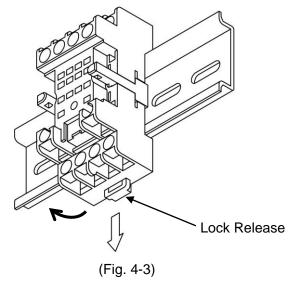
(3) Insert the WIL-102-ECH into the socket.


(4) Fix the WIL-102-ECH and the socket by pushing the Lock Release up.

(Fig. 3.3-4)


4. Removal

- (1) Turn the power supply to the unit OFF.
- (2) Pull the Lock Release down, and release the WIL-102-ECH from the socket.



Check that the WIL-102-ECH and the socket are unlocked by pulling the Lock Release down.

(3) Separate the WIL-102-ECH from the socket.

(4) Remove the socket from the DIN rail by pulling the socket Lock Release (at the bottom of the socket) down.

5. Wiring

Warning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

1 Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the unit.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of this unit.
- Keep the input wires and power lines separate.

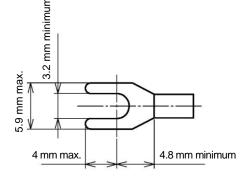
Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.
- Be sure to keep the cable dry and clean at all times.
- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

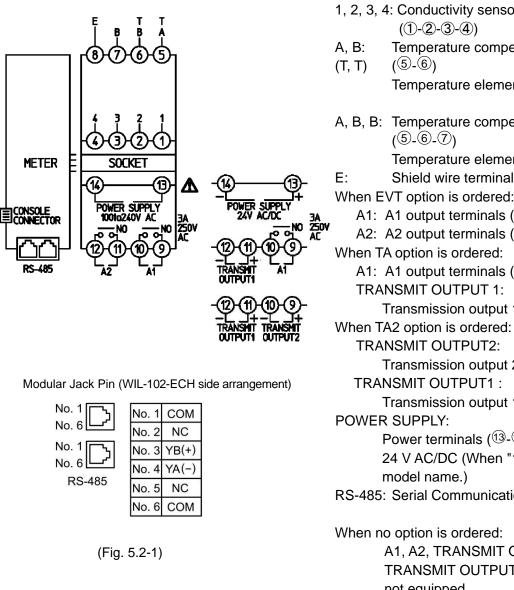
The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8


For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

5.1 Lead Wire Solderless Terminal


Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows. The tightening torque should be 0.63 N·m.

Solderless Terminal	Manufacturer	Model
Y-type	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25Y-3S

5.2 Terminal Arrangement

- 1, 2, 3, 4: Conductivity sensor terminals 1, 2, 3, 4
 - Temperature compensation sensor terminals

Temperature element: Pt100 (2-wire type), Pt1000

- A, B, B: Temperature compensation sensor terminals
 - Temperature element: Pt100 (3-wire type)
- Shield wire terminal $(^{(8)})$
 - A1: A1 output terminals (9-10)
 - A2: A2 output terminals (1)-12)
 - A1: A1 output terminals (9-10)

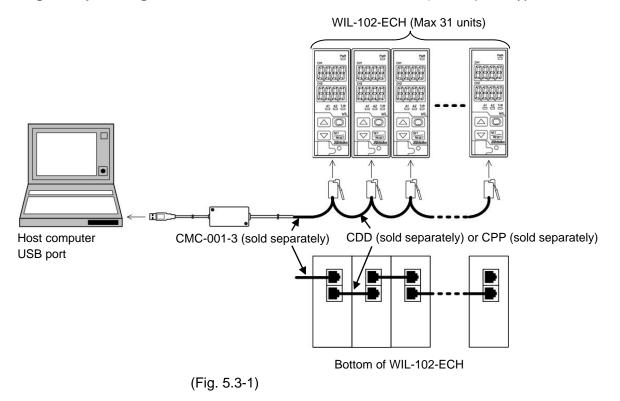
Transmission output 1 terminals (11-12)

Transmission output 2 terminals (9-10)

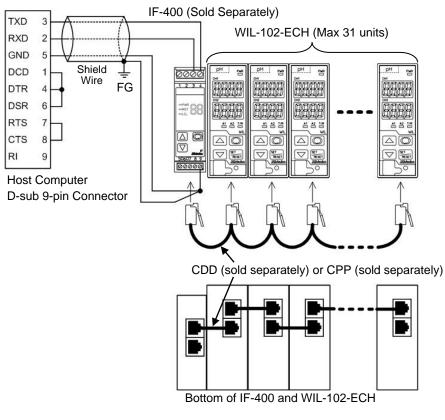
Transmission output 1 terminals (1)-(1)

Power terminals (13-14)

24 V AC/DC (When "1" is added after


RS-485: Serial Communication modular jack

A1, A2, TRANSMIT OUTPUT1, **TRANSMIT OUTPUT2 terminals are** not equipped.


5.3 Wire the Communication Line.

Connect to the modular jack at the bottom of the instrument, using CDD (sold separately) or CPP (sold separately).

• Wiring Example Using a USB Communication Cable CMC-001-3 (sold separately)

Wiring Example Using a Communication Converter IF-400

Shield Wire

Be sure to ground only one end of the shield wire so that current cannot flow to the shield wire. If both ends of the shield wire are grounded, the circuit will be closed, resulting in a ground loop. This may cause noise.

Be sure to ground the FG.

Recommended cable: OTSC-VB 2PX0.5SQ (made by Onamba Co., Ltd.) or equivalent (Use a twisted pair cable.)

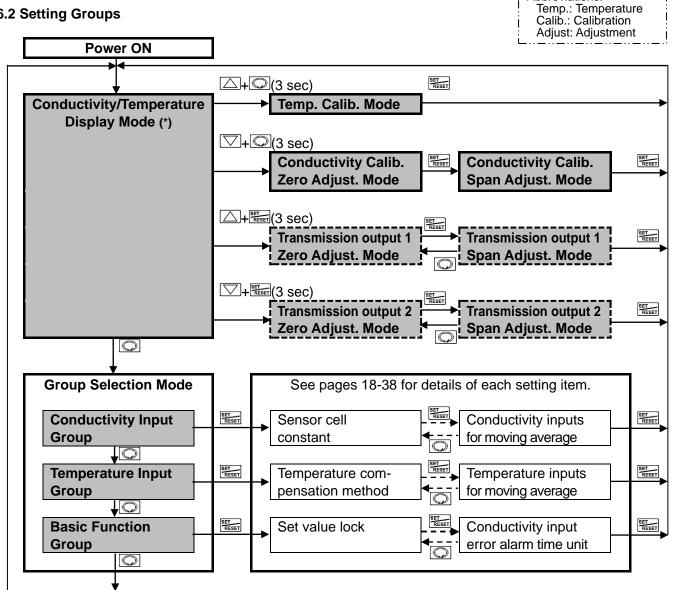
Terminator (Terminal Resistor)

The terminator is mounted at the end of the wire when connecting multiple peripheral devices to a personal computer. The terminator prevents signal reflection and disturbance.

Do not connect a terminator to the communication line because each WIL-102-ECH has built-in pull-up and pull-down resistors.

Communication converter IF-400 (sold separately) has a built-in terminal resistor.

6. Outline of Key Operation and Setting Groups


6.1 Outline of Key Operation

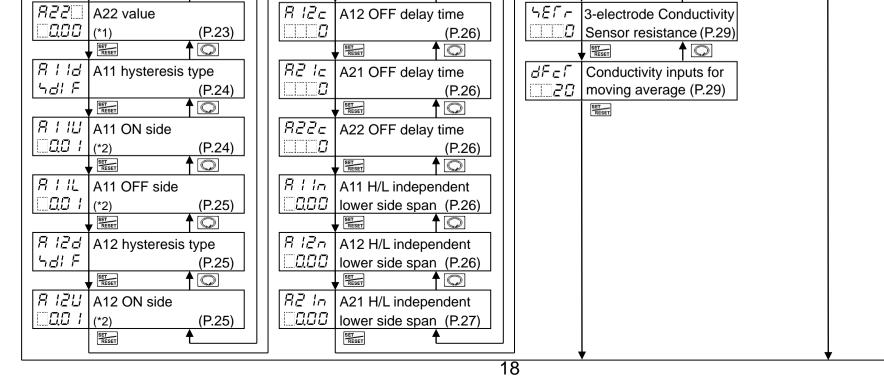
Setting items are divided into groups, and group selection has to be made with keypads. Press the 🔘 key in Conductivity/Temperature Display Mode. The unit enters Group Selection mode.

Abbreviations:

Select a group with the 🔘 key, and press the 🚟 key. The unit enters each setting item. To set each item, use the \bigtriangleup or \bigtriangledown key, and register the set value with the \blacksquare key.

6.2 Setting Groups

(*) Indicates the item selected in [Display selection (p.34)] in Conductivity/Temperature Display Mode.


Available when the TA option or TA2 option is ordered.

Key Operation

- 🖂 + 💭 (3 sec): Press and hold the 🖾 key and 💭 key (in that order) together for 3 seconds. The unit will proceed to Temperature Calibration Mode.
- 🖂 + 🔘 (3 sec): Press and hold the 🖂 key and 😡 key (in that order) together for 3 seconds. The unit will proceed to Conductivity Calibration Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 1 Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🖂 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 2 Zero Adjustment Mode.
- 💭, 🚟: Press the 🔘 or 🖼 key. The unit will enter the next setting item, illustrated by an arrow.
- First or D: Press the First or D key until the desired setting mode appears.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 seconds while in any mode.

7. Key Operation Flowchart

. Key Operation	i Flowchart	Abbreviations:	
Power ON		Adjust.: Adjustment H/L: High/Low limits	
☐ III Conductivity/Temper- ☐ 250 ature Display Mode			
□ + □ (3 sec)	、 「ゥヮ」」」 Temperature Cali	bration	
	► a a b a b a b a b a b a b a b a b a b	(P.41)	
◯ + ◯ (3 sec)	_ <i>吊台JΞ</i> Conductivity Calibr	ration	
	► □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	(P.39)	
→+ ^{SET} (3 sec)	RJE / Transmission out		
→+ ^{BET} (3 sec)	RJEZ Transmission out	(P43)	
F.nc. / Conductivity Input	Q	<i>E.a.c.2</i> Temperature Input	
CELL Sensor cell constant	Image: Relation of the second seco	$\vec{c} \cdot \vec{c} \cdot \vec{n}$ A22 H/L independent $\vec{c} \cdot \vec{c} \cdot \vec{n}$ Temperature compen-	
(P.20)	(P.25) ↓ ^{EEE}	□□□□ Iower side span (P.27) □□□□□ sation method (P.30) ↓ ﷺ ↑ □□□□ ↓	
COEF Cell constant	Re Id A21 hysteresis type	L P A11 H/L independent $L = a E$ Temperature coefficient	
Correction value (P.20)	(P.25)	□□□ upper side span (P.27) □□□ (P.30) ↓ ﷺ ↑ □□□ ↓	
● 『Esser 』 「」 「」」」「「 Measurement unit		$i\vec{c}\vec{P}$ A12 H/L independent $\dot{\beta}\vec{c}\vec{c}\vec{d}$ Reference	
conti (P.21)	(P.25)	$\Box\Box\Box$ upper side span (P.27) $\Box\Xi \Box \Box$ temperature (P.30)	
v [™] Esser ∩ ∩ ∩ Ω Measurement range	Image: state	$\downarrow \blacksquare $	
2000 (P.21)		Image: Constraint of the second secon	
「dっと」TDS conversion □ロ50 factor (P.22)		\mathbb{ZZP} A22 H/L independent \mathbb{ZDD} Pt100 input wire type \mathbb{ZDD} upper side span (P.27) \mathbb{PT} \mathbb{P}	
R I IF A11 type		H A11 hysteresis $a = BbL$ Cable length correction (D or)	
	(P.25) ↓ SET ★ SET ★ CD	<u>□□ / (P.28)</u> (P.30) ↓ ^{Str} _{Reser} ↑ ○ ↓ ^{Str} _{Reser} ↑ ○	
R IZF A12 type	REEL A22 OFF side	IごH A12 hysteresis にっちとこ Cable cross-section	
(P.23)	(P.25) (P.25)	<u>□□ / (P.28)</u> (P.20) ↓ [®] Eser ↑ ○ ↓ [®] Eser ↑ ○	
<u></u>		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(P.23)		(P.28) [III] (P.30)	
▼ ™ ↓	$\begin{bmatrix} & & & \\ $	$\overrightarrow{\mathcal{L}} \stackrel{\texttt{Marr}}{=} \qquad \qquad$	
(P.23)		Image: Complexity of the second se	
<i>Я I I</i> A11 value □ ΩΩΩ (*1) (P.23)		EFFF ALL output when input FF errors occur (P.29)	
│		に「「」」Conductivity input filter □□□□ time constant (P.29)	
(P.23) ↓ EFERET		LICI time constant (P.29) ↓ SELET ↑ ©	
<i>R2 I</i> A21 value	$ $ \overline{B} / \overline{c} A11 OFF delay time $ $ \overline{E}	ンロー Conductivity input	
	(P.26) ↓ SET ★ ©	□□□ sensor correction(P.29) ↓	

-2)

About Setting Items

cELL	Sensor cell constant
III 10	(P.20)
Fro I	Transmission output 1
Ec	type (P.32)

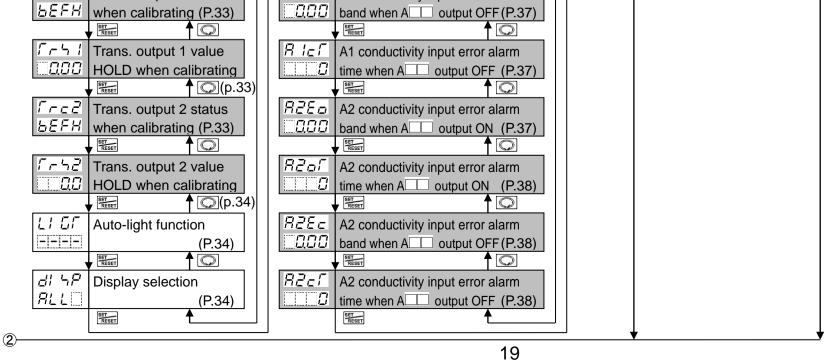
• Upper left: Conductivity Display: Indicates the setting item characters. • Lower left: Temperature Display: Indicates the factory default.

• Right side: Indicates the setting item and reference page.

Setting item in shaded section will be displayed only when the corresponding option is ordered.

If the TA option is added, A2 related setting items are not available.

If the TA2 option is added, A1 and A2 related setting items are not available.


(*1): Factory default value is different depending on the selection in [A type]. Conductivity input: 0.00, Temperature input: 0.0°C

(*2): Factory default value is different depending on the selection in [A type]. Conductivity input: 0.10, Temperature input: 1.0°C

About Key Operation

- \square + \square (3 sec): Press and hold the \square , \square keys (in that order) for 3 sec. The unit enters Temperature calibration mode.
- 🖂+📿(3 sec): Press and hold the 🖂, 🔘 keys (in that order) for 3 sec. The unit enters Conductivity calibration zero adjustment mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆, 🖼 keys (in that order) for 3 sec. The unit enters Transmission output 1 zero adjustment mode.
- 🖂+🚟 (3 sec): Press and hold the 🖂, 🚟 keys (in that order) for 3 sec. The unit enters Transmission output 2 zero adjustment mode.
- 🖸 or 📰: Press the 🖸 or 📰 key. The unit enters the next setting item.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 sec while in any mode.

		•
		Abbreviation:
$ a \int 2 \int E r $ Basic Function Group	\bigcirc	Trans: Transmission
BET RESET		
Lock Set value lock	$\Gamma I \overline{\sigma} E$ Indication time	$\bar{\sigma}_{-}$ $\bar{\gamma}_{-}$ Conductivity input error
		<i>っとこ</i> alarm time unit (P.38)
▼ Teser L Communication	↓ Temperature Display when no	RESET
protocol (P.31)	$\Box F F \Box$ temperature compensation (P.34)	
SET C		
Instrument number	R LoF A1 output allocation	
(P.31)	<u>R / / (P.35)</u>	
	$\overrightarrow{Rep} A2 \text{ output allocation}$	
BB speed (P.31)	A2 output allocation	
ーデデー Data bit/Parity	Don I Output ON time when	
7 <u>5</u> <u>Un</u> (P.31)	A1 output ON (P.35)	
	\square \square \square A1 output ON (P.36)	
ר ב ל Transmmision output 1	Dond Output ON time when	
Ec type (P.32)	A2 output ON (P.36)	
$ \begin{bmatrix} F_{\text{Essr}} & & \\ \hline \\ \hline$		
Image: Comparison of the second system Image: Comparison of the second system 1 Image: Comparison of the second system Image: Comparison of the second system 1 Image: Comparison of the second system Image: Comparison of the second system 1 Image: Comparison of the second system Image: Comparison of the second system 1 Image: Comparison of the second system 1 1 Image: Comparison of the second system	Def EOutput OFF time whenImage: DA2 output ON(P.36)	
↓ SET RESET		
「「」」 Transmmision output 1	BIE A1 conductivity input error	
000 Iow limit (P.32)	alarm A type (P.36)	
↓ Image: Transmision output 2	R2E A2 conductivity input error	
$r \in \mathcal{F}$ Transmission output 2 $r \in \mathcal{F}$ type (P.32)	A2 conductivity input error alarm A type (P.36)	
$\frac{\Gamma - H^2}{1 - H^2}$ Transmmision output 2	8 IE a A1 conductivity input error alarm	
high limit (P.33)	band when A output ON(P.37)	
$ \boxed{ \begin{bmatrix} -L \\ -L \end{bmatrix} } $ Transmission output 2	▼ Image: Second conductivity input error alarm	
I DO Iow limit (P.33)	A1 conductivity input error alarm	
SET C		
Trans. output 1 status	8 /E A1 conductivity input error alarm	
		1

8. Setup

Before using this instrument, setup should be performed to suit the conditions of usage:

Setting the Cell constant correction value, Measurement unit, A11, A12, A21 and A22 types,

Temperature compensation method, Communication, $A \Box \Box$ output when input errors occur, etc.

Setup can be conducted in the Conductivity Input Group, Temperature Input Group and Basic Function Group.

If the user's specification is the same as the factory default value of the WIL-102-ECH, or if setup has already been completed, it is not necessary to set up the instrument. Proceed to Section "9. Calibration (p.39)".

8.1 Turn the Power Supply ON.

For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table. 8.1-1). (Table. 8.1-1).

(Table: 0.1-1)			
Display	Character	Measurement Unit	
cond		Conductivity (mS/cm, μ S/cm)	
	51	Conductivity (S/m, mS/m)	
Conductivity Display	5 <i>ER</i>	Seawater salinity (%)	
	5 <i>81_</i> F	NaCl salinity (%) TDS conversion (g/L, mg/L)	
	rds.		
Dioplay	Character	Input Temperature	Selection Item in
Display	Character	Specification (*)	[Pt100 Input Wire Type] (p.30)
	PF 2	Pt100	<i>₽</i> / ⁻ <i>ב</i> ['] : 2-wire type
Temperature Display	PF 3	PIIOU	<i>₽/</i> □∃ : 3-wire type
	PF 10	Pt1000	

(*) This input temperature specification was specified when ordering.

During this time, all outputs are in OFF status, and LED indicators except the PWR Indicator turn off. After that, measurement starts, indicating the item selected in [Display selection (p.34)]. This status is called Conductivity/Temperature Display Mode.

8.2 Conductivity Input Group

To enter the Conductivity Input Group, follow the procedure below.

- 1) F.n.c. / Press the 🔘 key in Conductivity/Temperature Display Mode.
- 2 *cELL* Press the **E** key.

The unit enters the Conductivity Input Group, and "Sensor cell constant" is indicated.

Character	Setting Item, Function, Setting Range	Factory Default
cELL	Sensor cell constant	1.0/cm
10	 Selects sensor cell constant. 	
	If the Sensor cell constant is changed, Conductive values and Cell constant correction value will Set the Cell constant correction value again, a and Span adjustment values. • Selection item: □□ ↓□ : 1.0/cm □ ↓□□ : 10.0/cm	be cleared.
c 66F 1000	 Cell constant correction value Sets sensor cell constant correction value. <i>□ □ ⊑ □ ⊑ □</i> and conductivity are displayed alternately Setting range: 0.001 to 5.000 	1.000 y.

Character	Setting Item, Function	on, Setting Range	Factory Default				
Uni f	Measurement unit		Conductivity (mS/cm, <i>µ</i> S/cm)	-			
conð	Selects the conductivity	unit.					
		•	activity Zero and Span adjustment value				
			vity Zero and Span adjustment values.				
			Conductivity Span adjustment value wi	ill			
		-	ductivity Zero adjustment value. S/m) to Seawater salinity (%) or NaCl				
	salinity (%).		sing to Seawater samily (%) of Naci				
		Changing from Seawater salinity (%) or NaCl salinity (%) to Conductivity (mS/cm,					
	S/m).	, , , , , , , , , ,		- ,			
	 Changing from Seawater salinity (%) to NaCl salinity (%). 						
	 Selection item: 						
	con台 : Conductivity (r	mS/cm, μ S/cm)					
	-/ Conductivity (S/m, mS/m)					
	- Ε A : Seawater salir	nity (%)					
	られた。 : NaCl salinity (
	「」」:TDS conversio	on (g/L, mg/L)					
ñr nG	Measurement range		20.00 mS/cm				
2000	Selects the measurement	-					
	-	s changed, Condu	ctivity Zero and Span adjustment value	es			
	will be cleared.	- (i					
	Re-calibrate the Condu		sor cell constant and measurement unit.				
	When sensor cell cons (Table 8.2-1)	stant 1.0/cm is sele	ected:				
	Measurement Unit	Selection Item	Measurement Range				
		2000	0.00 to 20.00 mS/cm				
		2000	0.0 to 200.0 mS/cm				
		5000	0.0 to 500.0 mS/cm				
	Conductivity	500	0 to 500 mS/cm				
	Conductivity (mS/cm, <i>µ</i> S/cm)	2000	0.000 to 2.000 mS/cm				
		5000	0.000 to 5.000 mS/cm				
		5000	0.00 to 50.00 mS/cm				
		2000	0 to 2000 µS/cm				
		5000	0 to 5000 µS/cm				
		2000	0.000 to 2.000 S/m				
		2000	0.00 to 20.00 S/m				
		5000	0.00 to 50.00 S/m				
	Conductivity	500	0.0 to 50.0 S/m				
	(S/m, mS/m)	2000	0 to 2000 mS/m				
		5000	0.000 to 5.000 S/m				
		2000	0.0 to 200.0 mS/m				
		5000	0.0 to 500.0 mS/m				
		200	0.0 to 20.0 g/L				
	TDS conversion	200	0 to 200 g/L				
	(g/L, mg/L)	500	0 to 500 g/L				
		2000	0 to 2000 mg/L				
	Converter of the track (01)	5000	0 to 5000 mg/L				
	Seawater salinity (%) NaCl salinity (%)	2000	0.00 to 4.00%				
1			0.00 to 20.00%				

	Setting Item, Funct			t	
	When sensor cell cons	stant 10.0/cm is s	elected:		
	(Table 8.2-2) Measurement Unit	Selection Item	Measurement Range		
		2000	0.0 to 200.0 mS/cm		
	Conductivity	5000	0.0 to 500.0 mS/cm		
	(mS/cm)	2000	0 to 2000 mS/cm		
	Conductivity	2000	0.00 to 20.00 S/m		
	Conductivity (S/m, mS/m)	5000	0.00 to 50.00 S/m		
		2000	0.0 to 200.0 S/m		
		200	0 to 200 g/L		
	TDS conversion (g/L)		0 to 500 g/L		
		2000	0 to 2000 g/L		
	Seawater salinity (%)		0.00 to 4.00%		
	NaCl salinity (%)	2000	0.00 to 20.00%		
rd4E	TDS conversion factor		0.50		
<u>aso</u>	• Sets TDS conversion fac				
	Available only when $i = a$ Setting range: 0.30 to 1.0		ion (g/L)] is selected in [Measurem	ent unitj.	
R F	A11 type)0	No action		
	• Selects an A11 type.				
		nged, the A11 val	ue defaults to 0.00 or 0.0.		
	: No action				
	E = L: Conductivity in				
	$E \subseteq H$: Conductivity in				
	「 [「] [「] [「] [「] [「] [「] [「] [「] ¹				
				(2-3)] (n 23)	
	$\mathcal{E} \cap \mathcal{A}^{\Gamma}$: Error output [Output turns ON when the error type is "Error".(Table 8.2-3)] (p.23) $\mathcal{F}\mathcal{B}^{\Gamma}\mathcal{L}$: Fail output [Output turns ON when the error type is "Fail". (Table 8.2-3)] (p.23)				
	$E \subset H'_{L}$: Conductivity input High/Low limits independent action (Fig. 8.2-2) (p.23)				
	$\Gamma \bar{\sigma} H L$: Temperature input High/Low limits independent action (Fig. 8.2-2) (p.23)				
	A11 action (Activated b	ased on the indic	cation value.)	A11 action (Activated based on the indication value.)	
	Conductivity input low limit action, Conductivity input high limit action,				
	Temperature input I		Temperature input high limit a		
	If Medium Value is selected hysteresis type]:				
	If Medium Value is selected	ed in [A11	Temperature input high limit a If Medium Value is selected in [A11		
	If Medium Value is selected hysteresis type]:	ed in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]:		
	If Medium Value is selected hysteresis type]:	ed in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]:		
	If Medium Value is selected hysteresis type]: A11 ON s	ed in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]:	iction	
	If Medium Value is selected hysteresis type]: A11 ON s	ed in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]:	iction	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF	ed in [A11 ides	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 value	- ON	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF OFF A11 value If Reference Value is selected	ed in [A11 ides	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 ON sides A11 value If Reference Value is selected in [A11	- ON	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF OFF A11 value If Reference Value is selected A11 ON s	ed in [A11 ides <u>ue</u> cted in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 Value If Reference Value is selected in [A11 hysteresis type]:	- ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF OFF A11 value If Reference Value is selected	ed in [A11 ides	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 ON sides A11 value If Reference Value is selected in [A11	- ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected A11 ON s A11 ON side*	ed in [A11 ides <u>ue</u> cted in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 Value If Reference Value is selected in [A11 hysteresis type]:	- ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF OFF A11 value If Reference Value is selected A11 ON s	ed in [A11 ides <u>ue</u> cted in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 Value If Reference Value is selected in [A11 hysteresis type]:	- ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected A11 value If Reference Value is selected hysteresis type]: A11 ON side*	ed in [A11 ides <u>ue</u> cted in [A11	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 Value If Reference Value is selected in [A11 hysteresis type]:	- ON - OFF - ON	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected hysteresis type]: A11 ON side*	ed in [A11 ides ue cted in [A11 A11 OFF side*	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 Value If Reference Value is selected in [A11 hysteresis type]:	- ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected A11 ON s If Reference Value is selected hysteresis type]: A11 ON side* ON OFF A11	ed in [A11 ides ue cted in [A11 A11 OFF side* value	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 value If Reference Value is selected in [A11 hysteresis type]: A11 OFF side* A11 ON side	- ON - OFF - ON	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected hysteresis type]: A11 ON side* ON OFF A11 ON side* ON OFF A11 * Setting Example:	ed in [A11 ides ue cted in [A11 A11 OFF side* value (Fig.	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 ON sides A11 value If Reference Value is selected in [A11 hysteresis type]: A11 OFF side* A11 ON side A11 ON side A11 Value 8.2-1)	- ON - OFF * - ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selected A11 ON side If Reference Value is selected hysteresis type]: A11 ON side* ON OFF A11 ON side* ON OFF A11 * Setting Example: If [A11 ON side (A + 1)]	ed in [A11 ides ue cted in [A11 A11 OFF side* value (Fig. ction of the set to 0.00	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 ON sides A11 value If Reference Value is selected in [A11 hysteresis type]: A11 OFF side* A11 ON side A11 ON side	- ON - OFF * - ON - OFF	
	If Medium Value is selected hysteresis type]: A11 ON s ON OFF A11 value If Reference Value is selech hysteresis type]: A11 ON side* ON OFF A11 ON side* ON OFF A11 * Setting Example: If [A11 ON side (A1)] at the value set in [A11]	ed in [A11 ides ue cted in [A11 A11 OFF side* value (Fig. (Fig.	Temperature input high limit a If Medium Value is selected in [A11 hysteresis type]: A11 ON sides A11 ON sides A11 value If Reference Value is selected in [A11 hysteresis type]: A11 OFF side* A11 ON side A11 ON side A11 Value 8.2-1)	- ON - OFF - ON - OFF	

Character	Setting Item, Function, Setting Range			Factory Default	
		Conductivity input High/Low limits independent action,			
	Tempera	Temperature input High/Low limits independent action			
	A11 hysteresis A11 hysteresis				
	0				
	0				
		High/Low limits A11 valu		n/Low limits	
	independent lo	ower side span	indepen	dent upper side span	
		(Fig. 8.2-2	2)		
	• Error output,	Fail output			
	(Table. 8.2-3)	-		Description	
	Error Type	Error Temperature sensor		Description	
	Fail	burnout.	Temperate	ure sensor lead wire is burnt out.	
	Fail	Temperature sensor		ure sensor lead wire is	
		short-circuited	short-circu	uited.	
	Error	Outside temperature compensation range	Measured	temperature has exceeded 110.0°C.	
	Error	Outside temperature compensation range	Measured	temperature is less than 0.0℃.	
8 IZF	 A12 type Selects an A12) tuno		No action	
		pe is changed, the A	12 value de	efaults to 0.00 or 0.0.	
		on item and action, refe			
R2 IF	A21 type			No action	
	Selects an A21				
	-	pe is changed, the A			
RZZF		on item and action, refe	er to A11 ty		
	A22 typeSelects an A22	2 tupo		No action	
		pe is changed, the A	22 value de	efaults to 0.00 or 0.0.	
	-	on item and action, refe			
8:1	A11 value	Condu	uctivity inpu	t: 0.00 mS/cm, Temperature input: 0.0°C	
000	Sets an A11 va				
		· · ·	<i>ברסר</i> (Ei	ror output) or <i>F帠; ヒ</i> (Fail output)	
	is selected in [/	A11 type].			
	Setting range:	nut: Moocuromont rong	no low limit	to Measurement range high limit (*1)	
		put: 0.0 to $100.0^{\circ}C$ (*2)	-	to measurement range high limit (1)	
8 12	A12 value	•		t: 0.00 mS/cm, Temperature input: 0.0°C	
	Sets an A12 value				
	 Indication cond 	lition and setting range	are the sa	me as those of A11 value. (p.23)	
R2 I	A21 value		uctivity inpu	t: 0.00 mS/cm, Temperature input: 0.0° C	
<u> </u>	Sets an A21 va				
		T		me as those of A11 value. (p.23)	
822	A22 value		uctivity inpu	t: 0.00 mS/cm, Temperature input: 0.0℃	
000	Sets an A22 va		oro 16		
	 Indication cond 	attion and setting range	e are the sa	me as those of A11 value. (p.23)	

(*1): The measurement unit and decimal point place follow the measurement range.

(*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Iter	m, Function,	, Setting Range	Factory Default		
R I Id	A11 hysteresis ty			Reference Value		
Sdi F		•	۔ Medium or Reference Va			
				utput) or <i>F用L</i> (Fail output)		
	is selected in [A1					
	Selection item:	-				
		Sets the same value for both ON and OFF sides in relation to A11 value.				
		side needs	to be set.			
	ー <i>ーー F</i> : Referen					
			s for ON and OFF sides			
.		and OFF si	des need to be set indivi	, ,		
8110	A11 ON side			Conductivity input: 0.01 mS/cm		
00 (L	Temperature input: 1.0℃		
	• Sets the span of					
			selected in [A11 hysteres	sis type], the span of ON/OFF		
	side will be the s					
		•	icuon), LT DI (Error ou	utput) or <i>F帠i 노</i> (Fail output)		
	is selected in [A1		an an the selections of A	11 the and many set and		
		iers dependir	ig on the selections of A	11 type and measurement range.		
	(Table 8.2-4)	_				
		Me	asurement Range	Setting Range		
			0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm		
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm		
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm		
			0 to 500 mS/cm	0 to 50 mS/cm		
			0.000 to 2.000 mS/cm			
			0.000 to 5.000 mS/cm			
			0.00 to 50.00 mS/cm	0.00 to 5.00 mS/cm		
			0 to 2000 <i>µ</i> S/cm	0 to 200 µS/cm		
			0 to 5000 µS/cm	0 to 500 <i>µ</i> S/cm		
		Cell	0.000 to 2.000 S/m 0.00 to 20.00 S/m	0.000 to 0.200 S/m		
		constant		0.00 to 2.00 S/m		
		1.0/cm	0.00 to 50.00 S/m 0.0 to 50.0 S/m	0.00 to 5.00 S/m 0.0 to 5.0 S/m		
			0 to 2000 mS/m	0 to 200 mS/m		
			0.000 to 5.000 S/m	0.000 to 0.500 S/m		
	Conductivity		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m		
	input		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m		
	input		0.0 to 20.0 g/L	0.0 to 2.0 g/L		
			0 to 200 g/L	0 to 20 g/L		
			0 to 500 g/L	0 to 50 g/L		
			0 to 2000 mg/L	0 to 200 mg/L		
			0 to 5000 mg/L	0 to 500 mg/L		
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm		
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm		
			0 to 2000 mS/cm	0 to 200 mS/cm		
		Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m		
		constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m		
		10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m		
			0 to 200 g/L	0 to 20 g/L		
	1 1		0 to 500 g/L	0 to 50 g/L		
			0 to 2000 g/L	0 to 200 g/L		
		Seawater	0 to 2000 g/L			
				0 to 200 g/L		

Character	Setting Item, Function, Setting Range	Factory Default
	A11 OFF side	Conductivity input: 0.01 mS/cm
		Temperature input: 1.0°C
	Sets the span of A11 OFF side.	
	• Not available if $\Box \Box' \vdash \Box'$ (Medium Value) is selected in [[A11 hysteresis type]
	• Not available if $\Box = \Box = \Box$ (No action), $E = \Box \overline{\Box}$ (Error ou	
	is selected in [A11 type].	
	• Setting range differs depending on the selections of A1	1 type and measurement range
	See (Table 8.2-4). (p.24)	
R IZd	A12 hysteresis type	Reference Value
SdIF	Selects A12 hysteresis type (Medium or Reference Value)	
	 Indication condition and selection item are the same as the 	
8 120	A12 ON side	Conductivity input: 0.01 mS/cm
001		Temperature input: 1.0℃
	Sets the span of A12 ON side.	
	If $ c c' f' f' $ (Medium Value) is selected in [A12 hysteres	is type], the span of ON/OFF
	side will be the same value.	
	• Indication condition and setting range are the same as	
A IZL	A12 OFF side	Conductivity input: 0.01 mS/cm
<u> </u>		Temperature input: 1.0°C
	Sets the span of A12 OFF side.	
	Indication condition and setting range are the same as	
R2 Id	A21 hysteresis type	Reference Value
Sdl F	Selects A21 hysteresis type (Medium or Reference Value)	
	Indication condition and selection item are the same as the	
R2 IU	A21 ON side	Conductivity input: 0.01 mS/cm Temperature input: 1.0°C
<u> </u>	Sets the span of A21 ON side.	
	If $\subseteq \exists i \in \mathcal{F}$ (Medium Value) is selected in [A21 hysteres	is type] the span of ON/OFF
	side will be the same value.	is type], the span of ON/OFT
	 Indication condition and setting range are the same as 	those of A11 ON side (p. 24)
R2 IL	A21 OFF side	Conductivity input: 0.01 mS/cm
		Temperature input: 1.0°C
	Sets the span of A21 OFF side.	
	• Indication condition and setting range are the same as	those of A11 OFF side. (p.25)
8224	A22 hysteresis type	Reference Value
5 <i>61</i> F	• Selects A22 hysteresis type (Medium or Reference Value	ue).
	Indication condition and selection item are the same as the s	
8220	A22 ON side	Conductivity input: 0.01 mS/cm
<u> </u>		Temperature input: 1.0°C
	• Sets the span of A22 ON side.	
	If $ c d! F $ (Medium Value) is selected in [A22 hysteres	is type], the span of ON/OFF
	side will be the same value.	
	Indication condition and setting range are the same as	
1528 N	A22 OFF side	Conductivity input: 0.01 mS/cm Temperature input: 1.0°C
001	Sets the span of A22 OFF side.	
	 Indication condition and setting range are the same as 	those of A11 OFF side (n. 25)
Rilo	A11 ON delay time	0 seconds
	Sets A11 ON delay time.	0.0000103
·····················	The A11 does not turn ON (under the conditions of turn	ing ON) until the time set in
	[A11 ON delay time] elapses.	
	• Not available if $\Box = \Box = \Box$ (No action), $\Xi = \Box = \Box$ (Error out	tout) or $EBII$ (Fail output)
	is selected in [A11 type].	
	Setting range: 0 to 9999 seconds	
	י טבונוווע ומוועב. ע נע שששש שבנטוועש	

Character	Setting Item, Function, Setting Range	Factory Default
8 120	A12 ON delay time	0 seconds
0	Sets A12 ON delay time.	
	The A12 does not turn ON (under the conditions of turr	ning ON) until the time set in
	[A12 ON delay time] elapses.	
	 Indication condition and setting range are the same as 	those of A11 ON delay time (p.25)
82 lo		
	A21 ON delay time	0 seconds
	Sets A21 ON delay time.	
	The A21 does not turn ON (under the conditions of turn	ning ON) until the time set in
	[A21 ON delay time] elapses.	
	Indication condition and setting range are the same as	those of A11 ON delay time.
	(p.25)	
8220	A22 ON delay time	0 seconds
	Sets A22 ON delay time.	
	The A22 does not turn ON (under the conditions of turr	ning ON) until the time set in
	[A22 ON delay time] elapses.	
	• Indication condition and setting range are the same as	those of A11 ON delay time(p.25)
R I Ic	A11 OFF delay time	0 seconds
	Sets A11 OFF delay time.	
	The A11 does not turn OFF (under the conditions of tur	ning OFF) until the time set in
	[A11 OFF delay time] elapses.	S ,
	• Not available if EEEE (No action), Eror ou	tput) or <i>F用L (</i> (Fail output)
	is selected in [A11 type].	
	Setting range: 0 to 9999 seconds	
A 12c	A12 OFF delay time	0 seconds
<i>D</i>	Sets A12 OFF delay time.	
	The A12 does not turn OFF (under the conditions of tur	rning OFF) until the time set in
	[A12 OFF delay time] elapses.	-
	• Indication condition and setting range are the same as	those of A11 OFF delay time.(p.26)
82 Ic	A21 OFF delay time	0 seconds
	Sets A21 OFF delay time.	
	The A21 does not turn OFF (under the conditions of tur	rning OFF) until the time set in
	[A21 OFF delay time] elapses.	
	 Indication condition and setting range are the same as 	those of A11 OFF delay time.(p.26)
822c	A22 OFF delay time	0 seconds
	Sets A22 OFF delay time.	
	The A22 does not turn OFF (under the conditions of tur	rning OFF) until the time set in
	[A22 OFF delay time] elapses.	
	Indication condition and setting range are the same as	
RIIn	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm
000	lower side span	Temperature input: 0.0°C
	• Sets the lower side span of A11 High/Low limits independent of A11 High/Low limits independent to 0.00 or 0.0%	endent action.
	Disabled when set to 0.00 or 0.0° C.	mite independent estimates
	・Available when EcHL (Conductivity input High/Low lin 「こHL (Temperature input High/Low limits independer	
	• Setting range:	it action) is selected in [ATT type].
	Conductivity input: Measurement range low limit to Me	asurement range high limit (*4)
	Temperature input: 0.0 to 100.0° (*2)	
R IZn	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm
	lower side span	Temperature input: 0.0℃
	Sets the lower side span of A12 High/Low limits independent	
	• For the action, indication condition and setting range, r	
	independent lower side span]. (p.26)	
	rement unit and decimal point place follow the measurement range	

(*1): The measurement unit and decimal point place follow the measurement range. (*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Item, Function, Setting Range	Factory Default
82 In	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm
	lower side span	Temperature input: 0.0°C
	Sets the lower side span of A21 High/Low limits indepe	endent action.
	• For the action, indication condition and setting range, re	efer to [A11 High/Low limits
	independent lower side span]. (p.26)	
822n	A22 High/Low limits independent	Conductivity input: 0.00 mS/cm
000	lower side span	Temperature input: 0.0℃
	Sets the lower side span of A22 High/Low limits indepe	endent action.
	• For the action, indication condition and setting range, re	efer to [A11 High/Low limits
	independent lower side span]. (p.26)	
R P	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm
00	upper side span	Temperature input: 0.0℃
	 Sets the upper side span of A11 High/Low limits independent 	endent action.
	Disabled when set to 0.00 or 0.0℃.	
	• Available when $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}^{L}$ (Conductivity input High/Low lin	
	「うけ」(Temperature input High/Low limits independen • Setting range:	t action) is selected in [A11 type].
	Conductivity input: Measurement range low limit to Mea	surement range high limit (*1)
	Temperature input: 0.0 to 100.0° (*2)	astrement range night innit (1)
8 122	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm
	upper side span	Temperature input: 0.0°C
	 Sets the upper side span of A12 High/Low limits independent 	endent action
	• For the action, indication condition and setting range, re-	
	independent upper side span]. (p.27)	3
R2 IP	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm
000	upper side span	Temperature input: 0.0°C
	 Sets the upper side span of A21 High/Low limits independent 	endent action.
	• For the action, indication condition and setting range, re	
	independent upper side span]. (p.27)	
<i>822P</i>	A22 High/Low limits independent	Conductivity input: 0.00 mS/cm
	upper side span	Temperature input: 0.0℃
	 Sets the upper side span of A22 High/Low limits independent 	endent action.
	• For the action, indication condition and setting range, re	
	independent upper side span]. (p.27)	-

(*1): The measurement unit and decimal point place follow the measurement range.(*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	em, Function	, Setting Range	Factory Default
8 I IH	A11 hysteresis		Conductivity input: 0.01 mS/cm	
001	Temperature input: 1.0°C			
	Sets hysteresis of A11 High/Low limits independent action.			
	• Available when $\mathcal{E} \subset \mathcal{H}'_{\mathcal{L}}$ (Conductivity input High/Low limits independent action) or			
	「 <i>こ</i> HL (Tempera	ature input Hig	gh/Low limits independent	t action) is selected in [A11 type].
	 Setting range dif 	fers dependir	ng on the selections of A1 ²	1 type and measurement range.
	(Table 8.2-5)			
	A Type	Ме	asurement Range	Setting Range
			0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm
			0 to 500 mS/cm	1 to 50 mS/cm
			0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm
			0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm
			0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm
			0 to 2000 µS/cm	1 to 200 µS/cm
			0 to 5000 µS/cm	1 to 500 µS/cm
		Cell	0.000 to 2.000 S/m	0.001 to 0.200 S/m
		constant	0.00 to 20.00 S/m	0.01 to 2.00 S/m
		1.0/cm	0.00 to 50.00 S/m	0.01 to 5.00 S/m
			0.0 to 50.0 S/m	0.1 to 5.0 S/m
			0 to 2000 mS/m	1 to 200 mS/m
			0.000 to 5.000 S/m	0.001 to 0.500 S/m
	Conductivity		0.0 to 200.0 mS/m	0.1 to 20.0 mS/m
	input		0.0 to 500.0 mS/m	0.1 to 50.0 mS/m
			0.0 to 20.0 g/L	0.1 to 2.0 g/L
			0 to 200 g/L	1 to 20 g/L 1 to 50 g/L
			0 to 500 g/L 0 to 2000 mg/L	1 to 200 mg/L
			0 to 5000 mg/L	1 to 500 mg/L
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm
			0 to 2000 mS/cm	1 to 200 mS/cm
		Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m
		constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m
		10.0/cm	0.0 to 200.0 S/m	0.1 to 20.0 S/m
		10.0/011	0 to 200 g/L	1 to 20 g/L
			0 to 500 g/L	1 to 50 g/L
			0 to 2000 g/L	1 to 200 g/L
		Seawater	salinity 0.00 to 4.00%	0.01 to 0.40%
			ity 0.00 to 20.00%	0.01 to 2.00%
	Temperature			
	input	0.0 to 100	.0°C	0.1 to 10.0℃
		I		
R 12H 00 1	A12 hysteresis			Conductivity input: 0.01 mS/cm
	· Soto byotorocia	of & 10 11.mm/	ow limite independent	Temperature input: 1.0°C
	-	-	ow limits independent act	
		n condition ar	nd setting range, refer to [/	
R2 IX	A21 hysteresis			Conductivity input: 0.01 mS/cm
<u> </u>				Temperature input: 1.0°C
	-	-	ow limits independent act	
	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)			

Character	Setting Item, Function, Setting Range	Factory Default	
<i>822H</i>	A22 hysteresis	Conductivity input: 0.01 mS/cm	
<u> </u>		Temperature input: 1.0°C	
	Sets hysteresis of A22 High/Low limits independent action.		
	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)	
lErr	A output when input errors occur	Disabled	
oFF	• Selects whether to enable or disable A^{\square} output in the	e event of an input error such as a	
	conductivity sensor burnout or short circuit.		
	If Enabled is selected, $A \square \square$ output and $A \square \square$ output st	tatus will be maintained in the	
	event of an input error.		
	If Disabled is selected, $A \square \square$ output and $A \square \square$ output s	tatus will be turned OFF in the	
	event of an input error.	~	
	• Available when $\mathcal{E}_{\mathcal{E}_{\mathcal{E}}}$ (Conductivity input low limit ac		
	high limit action), $\int \vec{n} P L$ (Temperature input low limit a	action) or <i>にとけ</i> る (Temperature	
	input high limit action) is selected in [A \Box type].		
	• Selection item:		
	<i>□□</i>		
		0.0 accorde	
F; F ; 00	Conductivity input filter time constant	0.0 seconds	
	 Sets Conductivity input filter time constant. If the value is set too large, it affects A output due to 	a the delay of response	
	Setting range: 0.0 to 10.0 seconds	o the delay of response.	
E 40	Conductivity input sensor correction	0.00 mS/cm	
000	Sets conductivity input sensor correction value.		
	This corrects the measured value from the Conductivit	tv Sensor. When a sensor cannot	
	be set at the exact location where measurement i	-	
	conductivity may deviate from the conductivity in the m	neasured location. In such a case,	
	desired conductivity can be obtained by adding a senso	r correction value.	
	However, it is effective within the measurement range re	egardless of the sensor correction	
	value.		
	Conductivity after sensor correction = Current conductiv	vity + (Sensor correction value)	
	• Setting range: ±10% of measurement span (*)		
5 <i>61 -</i>	3-electrode Conductivity Sensor resistance	0Ω	
	• If the 3-electrode Conductivity Sensor is used, set the r	esistance value of 3-electrode	
	Conductivity Sensor.		
	• Setting range: 0 to 100 Ω		
dFcF	Conductivity inputs for moving average	20	
20	Set the number of conductivity inputs used to obtain mo	• •	
	An average conductivity input value is calculated using		
	conductivity inputs. The conductivity input value is repla		
	However, the conductivity input moving average function is disabled in conductivity		
	calibration mode or in temperature calibration mode.		
	Setting range: 1 to 120		

(*): The measurement unit and decimal point place follow the measurement range.

8.3 Temperature Input Group

To enter the Temperature Input Group, follow the procedure below.

(1) F.n.c. \vec{c} Press the \square key twice in Conductivity/Temperature Display Mode.

2 / c n Press the Key.

The unit will enter Temperature Input Group, and "Temperature compensation method" will appear.

Character	Setting Item, Function, Setting Range	Factory Default	
ſ_ā	Temperature compensation method(*1)	NaCl	
nReL	Selects Temperature compensation calculation method.		
	• $\sigma B c L$: Temperature compensation is conducted using temperature characteristics of		
	NaCI. Select when the main salt ingredient in a sample is NaCI.		
	$\int c d \xi$: Temperature compensation is conducted using temperature coefficient (%/°C)		
	and a randomly selected reference temperature.		
	□FF□ : No temperature compensation		
tco£	Temperature coefficient(*1), (*2)	2.00 %/°C	
2.00	Sets the temperature coefficient.		
	If temperature coefficient is set to 2.00 %/°C, this value can	be used for most aqueous	
	solutions.		
	If temperature coefficient of an aqueous solution is already	-known, set the value.	
	If temperature coefficient is set to 0.00 %/°C, conductivity w	ithout temperature	
	compensation will be indicated.		
	• Setting range: -5.00 to 5.00 %/℃		
hſnd	Reference temperature(*1)	25.0° ℃	
250	Sets the reference temperature for temperature compensa	tion.	
	• Setting range: 5.0 to 95.0°C(*3)		
dP2	Decimal point place	1 digit after decimal point	
00	Selects decimal point place.		
	• $\square \square \square \square$: No decimal point		
	$\Box \Box \Box \Box$: 1 digit after decimal point		
conE	Pt100 input wire type	3-wire type	
PF[]]3	 Selects the input wire type of Pt100. 		
	 Not available for the Temperature element Pt1000. 		
	This setting item and all subsequent items are available on		
	value) is selected in [Temperature Display when no temper	ature compensation].	
	• <i>P[</i>]_2 : 2-wire type		
<u> </u>	$P \Gamma \square \exists$: 3-wire type		
cR6L	Cable length correction	0.0 m	
0.0	Sets the cable length correction value.		
	• Available only when $P' \square E'$ (2-wire type) is selected in [Pt10	00 input wire type].	
	Not available for the Temperature element Pt1000.		
	Setting range: 0.0 to 100.0 m		
chEc Mana	Cable cross-section area 0.30 mm ²		
030	• Sets the cable cross-section area.		
	• Available only when $P' \square Z'$ (2-wire type) is selected in [Pt100 input wire type].		
	Not available for the Temperature element Pt1000.		
	Setting range: 0.10 to 2.00 mm ²		
FI F 2 00	Temperature input filter time constant	0.0 seconds	
: !!	Sets Temperature input filter time constant.		
	 If the value is set too large, it affects A output due to the delay of response. Setting range: 0.0 to 10.0 seconds 		

(*1): Not available if $\neg \mathcal{E} \mathcal{A}$ (Seawater salinity) or $\neg \mathcal{B} \mathcal{L} \mathcal{I}$ (NaCl salinity) is selected in [Measurement unit(P.21)].

(*2): Available only when f c a E is selected in [Temperature compensation method].

(*3): The placement of the decimal point follows the selection.

Character	Setting Item, Function, Setting Range	Factory Default
dFcT	Temperature inputs for moving average	20
<u> </u>	 Set the number of temperature inputs used to obtain moving An average temperature input value is calculated using the temperature inputs. The temperature input value is replaced However, the temperature input moving average function is calibration mode. Setting range: 1 to 120 	selected number of l every input sampling period.

8.4 Basic Function Group

To enter the Basic Function Group, follow the procedure below.

- Press the \bigcirc key 3 times in Conductivity/Temperature Display Mode. Press the $\textcircled{\begin{tabular}{ll}}$ key. 1) a.C.E.r
- 2 Lock

The unit will enter the Basic Function Group, and "Set value lock" will appear.

Character	Setting Item, Function, Setting Range	Factory Default	
Lock	Set value lock	Unlock	
	 Locks the set values to prevent setting errors. 		
	Selection item:		
	(Unlock): All set values can be changed.		
	$L \Box = \frac{1}{2}$ (Lock 1): None of the set values can be changed.		
	$L \Box c \overline{c}'$ (Lock 2): Only A11, A12, A21 and A22 values can	-	
	$L \square \square \exists$ (Lock 3): All set values – except Sensor cell const		
	Measurement range, Conductivity Zero a	and Span adjustment values,	
	Temperature calibration value, Transmis	sion output 1 Zero and Span	
	adjustment values, Transmission output	2 Zero and Span adjustment	
	values – can be temporarily changed. He	owever, they revert to their	
	previous value after the power is turned	off because they are not	
	saved in the non-volatile IC memory.		
	Do not change the A11, A12, A21 or A22	type. If they are changed,	
	they will affect other setting items.		
	Be sure to select Lock 3 when changing		
	software communication. (If a value set v		
	the same as the value before the setting	, the value will not be written	
	in non-volatile IC memory.)		
c746	Communication protocol	Shinko protocol	
noñL	Selects communication protocol.		
	• Selection item: apail: Shinko protocol		
	noda: MODBUS ASCII mode		
-	nadr: MODBUS RTU mode		
<u>cnno</u>	Instrument number	0	
	 Sets the instrument number of each unit. (The instrument n one when multiple instruments are connected.) 	umbers should be set one by	
	Setting range: 0 to 95		
cñ5P	Communication speed	9600 bps	
55	 Selects a communication speed equal to that of the host co 		
	• Selection item: 55: 9600 bps		
	//////////////////////////////////////		
	<i>∃B</i> ∀: 38400 bps		
CAFE	Data bit/Parity	7 bits/Even	
7687	Selects data bit and parity.		
	Selection item:		
	Bron : 8 bits/No parity		
	Toon: 7 bits/No parity		
	BEB = : 8 bits/Even		
	$7EB_{-1}$: 7 bits/Even		
	ੋਹਰੋਰ : 7 bits/Odd		

Character	Setting Item, Function, Setting Range	Factory Default	
c กี ๖/	Stop bit	1 bit	
1	Selects the stop bit.		
	• Selection item: $l : 1$ bit $\vec{c} : 2$ bits		
Frol	Transmission output 1 type	Conductivity transmission	
Ec	Selects Transmission output 1 type.		
	If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation		
	method (p.30)], and if $f \in \overline{c}F$ (Temperature transmission) is selected, then transmission		
	output 1 value will differ depending on the selection in [Tem	perature Display when no	
	temperature compensation (p.34)] as follows.		
	If $aFF\square$ (Unlit) or $bFa\square$ (Reference temperature) is s	selected, the value set in	
	[Reference temperature (p.30)] will be output.	han a 20 h n an tract	
	If PB (Measured value) is selected, the measured value	-	
	 Available when Transmission output 1 (TA option) or Transmis ordered. 	nission output 2 (TA2 option)	
	Selection item:		
	$\mathcal{E}_{\mathcal{E}}$ Conductivity transmission		
	$\Gamma \in \overline{P}$: Temperature transmission		
Ггни	Transmission output 1 high limit	20.00 mS/cm	
2000	Sets Transmission output 1 high limit value. (This value corrected)		
	If Transmission output 1 high limit and low limit are set to the	. ,	
	output 1 will be fixed at 4 mA DC.		
	Available when Transmission output 1 (TA option) or Transmission	nission output 2 (TA2 option)	
	is ordered.		
	Setting range:		
	If $\mathcal{E}_{\mathcal{C}}$ (Conductivity transmission) is selected in [Transmission]	nission output 1 type]:	
	Transmission output 1 low limit to Conductivity range hi	•	
	If $\Gamma E \overline{\alpha} \overline{P}$ (Temperature transmission) is selected in [Transr	nission output 1 type]:	
	Transmission output 1 low limit to 100.0℃		
	Transmission output 1 low limit	0.00 mS/cm	
000	Sets Transmission output 1 low limit value. (This value correpo	,	
	If Transmission output 1 high limit and low limit are set to the	e same value, Transmission	
	output 1 will be fixed at 4 mA DC.	ninging output 2 (TA2 option)	
	 Available when Transmission output 1 (TA option) or Transmis ordered. 		
	Setting range:		
	If $\mathcal{E}_{\mathcal{C}}$ (Conductivity transmission) is selected in [Transmission]	nission output 1 typel [.]	
	Conductivity range low limit to Transmission output 1 hig		
	If $\Gamma E \overline{\cap} P$ (Temperature transmission) is selected in [Transmission]		
	0.0℃ to Transmission output 1 high limit		
[roz	Transmission output 2 type	Temperature transmission	
FEAP	Selects Transmission output 2 type.		
	If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation		
	method (p.30)], and if $f \in \overline{c} F'$ (Temperature transmission) is selected, then Transmoutput 2 value will differ depending on the selection in [Temperature Display when n		
	temperature compensation (p.34)] as follows.		
	If ロFFII (Unlit) or '- 「 ゴ I (Reference temperature) is s	selected, the value set in	
	[Reference temperature (p.30)] will be output.	due will be cutruit	
	If PB (Measured value) is selected, the measured value λ_{1} (TA_{2} option) is a		
	 Available only when Transmission output 2 (TA2 option) is c Selection item: 		
	• Selection item: $\mathcal{E}_{\mathcal{L}}$: Conductivity transmission		
	$\Gamma E \overline{\rho} P$: Temperature transmission		

Character	Setting Item, Function, Setting Ran	ge	Factory Default
FrH2	Transmission output 2 high limit	-	 100.0℃
1000	 Sets Transmission output 2 high limit value. (This value correponds to 20 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: 		
	If E ⊆ (Conductivity transmission) is selected in [Transmission output 2 type]: Transmission output 2 low limit to Conductivity range high limit If 「 こう? (Temperature transmission) is selected in [Transmission output 2 type]: Transmission output 2 low limit to 100.0°C		
[rl2	Transmission output 2 low limit		0.0°C
00	 Sets Transmission output 2 low limit value. (This value correponds to 4 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: If <i>E</i> c □ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Transmission output 2 high limit If <i>F</i> c □ (Temperature transmission) is selected in [Transmission output 2 type]: 		
Fre I	0.0°C to Transmission output 2 high limit Transmission output 1 status when calibrating		Last value HOLD
БЕГН	 Selects Transmission output 1 output status when calibrating conductivity. Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Selection item:		
5-51	PBH : Measured value (Outputs the measured value UOL D when		
	Transmission output 1 value HOLD when calibrating	•	transmission: 0.00 mS/cm transmission: 0.0°C
	 Sets Transmission output 1 value HOLD. Available only when <i>与E「H</i> (Set value HOLD) is selected in [Transmission output 1 status when calibrating]. Setting range: When <i>Ec</i> ○ (Conductivity transmission) is selected in [Transmission output 1 type]: Conductivity range low limit to Conductivity range high limit When <i>FE¬F</i> (Temperature transmission) is selected in [Transmission output 1 type]: 0.0 to 100.0°C 		
Fred	Transmission output 2 status when calibrati	ng	Last value HOLD
5EFH	 Selects Transmission output 2 output status when calibrating conductivity. Available only when Transmission output 2 (TA2 option) is ordered. Selection item: <i>b E F H</i>: Last value HOLD (Retains the last value before conductivity calibration, and outputs it.) <i>'F E F H</i>: Set value HOLD (Outputs the value set in [Transmission output 2 value HOLD when calibrating].) <i>P B H</i>: Measured value (Outputs the measured value when calibrating conductivity.) 		

Character	Setting Item, Function, Setting Range	Factory Default		
1-42	Transmission output 2 value HOLD when	Conductivity transmission: 0.00 mS/cm		
0.0	calibrating	Temperature transmission: 0.0℃		
	Sets Transmission output 2 value HOLD.			
	• Available only when $\neg \mathcal{E} \mathcal{F} \mathcal{H}$ (Set value HOLD) is selected in [Transmission output 2			
	0.	status when calibrating].		
	• Setting range:			
	When <i>E</i> c (Conductivity transmission) is			
	Conductivity range low limit to Conductivity When $F \in \overline{A} = \overline{B}$ (Temperature transmission) is	5 5		
	0.0 to 100.0℃			
	Auto-light function	Disabled		
	Selects Auto-light Enabled/Disabled.	Disabled		
·/	Selection item:			
	: Disabled			
	<i>U与E</i> □ : Enabled			
di 5P	Display selection	Conductivity/Temperature		
ALL.	 Selects items to be indicated on the Conduction 	vity Display and Temperature Display.		
	Selection item:			
	Conductivity Display	Temperature Display		
	RLL Conductivity	Temperature		
	Ec. Conductivity	No indication		
	FEAP No indication	Temperature		
	οφοξ No indication	No indication		
FL AE	Indication time	00.00		
0000	• Sets the indication time of the displays from no key operation until displays go off.			
	Displays remain lit when set to 00.00.			
	If any errors occur or any key is pressed while in unlit status, the display will light up. • Not available if $nan\xi$ (No indication) is selected in [Display selection].			
		lected in [Display selection].		
	Setting range: 00.00 (Remains lit)			
	00.00 (Remains in) 00.01 to 60.00 (Minutes.Seconds)			
oFdP	Temperature Display when no temperature	Unlit		
oFF	compensation	01ml		
	 Selects an item to be indicated on the Tempe 	erature Display when $\varphi F = (No)$		
	temperature compensation) is selected in [Te			
	The placement of the decimal point for the refe			
	• Available only when $\varphi \in F$ (No temperature compensation) is selected in [Temperature			
	compensation method].	. ,		
	Selection item:			
	<i>oFF</i> ⊡: Unlit			
	<i>'っこは</i> : Reference temperature			
	PB Measured value			

Character	Setting Item, Function, Setting Range	Factory Default		
R IoF	A1 output allocation	A11 type		
811	Selects A1 output allocation.			
	For A1 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.		
	Output is OR output.			
	Not available if Transmission output 2 (TA2 option) is ordered.			
	Selection item:			
	<i>用 ↓ I</i> □ : A11 type			
	<i>☐] 2</i> : A12 type			
	<i>R2</i> /□ : A21 type			
	<i>R22</i> ⊡ : A22 type			
	<i>B IBL</i> : A11, A12 types			
	R2RL : A21, A22 types			
	<i>뮤 IR근</i> : A11, A21 types			
	R2R2 : A12, A22 types			
RZoF	RLL : A11, A12, A21, A22 types			
ncor 82 I	A2 output allocation	A21 type		
	Selects A2 output allocation.			
	For A2 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.		
	Output is OR output. • Not available if Transmission output 1 (TA option) or Transmi	(TA2 option)		
	is ordered.			
	 Selection items are the same as those of A1 output allocation 	on (p.35)		
oon l	Output ON time when A1 output ON	0 seconds		
	Sets Output ON time when A1 output is ON.			
	If Output ON time and OFF time are set, A1 output can be to	urned ON/OFF in a		
	configured cycle when A1 output is ON. (Fig. 8.4-1)			
	• Not available if Transmission output 2 (TA2 option) is order	ed.		
	Setting range: 0 to 9999 seconds			
	Timing chart (Output ON time and OFF time when A	A1 output is ON)		
		,		
	ON			
	Actual A1 output OFF			
		ON time is turned		
	A1 output to which ON	OFF, caused by the		
	A1 output to which ON ON ON ON ON time and OFF	actual A1 output turning OFF.		
	time are set. OFF			
	time time time			
	(Fig. 8.4-1)			

Character	Setting Item, Function, Setting Range	Factory Default	
00F 1	Output OFF time when A1 output ON	0 seconds	
	Sets Output OFF time when A1 output is ON.		
	If Output ON time and OFF time are set, A1 output can be turned ON/OFF in a		
	configured cycle when A1 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 2 (TA2 option) is order	ed.	
	Setting range: 0 to 9999 seconds		
oond	Output ON time when A2 output ON	0 seconds	
	Sets Output ON time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.		
	Setting range: 0 to 9999 seconds		
00F2	Output OFF time when A2 output ON	0 seconds	
0	Sets Output OFF time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.		
	Setting range: 0 to 9999 seconds		
RIE	A1 conductivity input error alarm A	No action	
	• Selects an A type in order to assess A1 conductivity inp		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Selection item Inclusion		
	<i>R I Z</i> : A12 type		
	<i>R2</i> /□ : A21 type		
	<i>₽₽₽</i> . : A22 type		
825	A2 conductivity input error alarm A	No action	
	• Selects A type in order to assess A2 conductivity input	error alarm.	
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)		
	is ordered.		
	Selection item		
	E : No action		
	<i>R I I</i>		
	<i>用 I2</i> □ : A12 type <i>用 I</i> □ : A21 type		
	A21 type B22: A22 type		

Character	Setting Item, Function, Setting Range	Factory Default	
R IEo	A1 conductivity input error alarm band	0.00 mS/cm	
	when A output ON		
	• Sets the band to assess A1 conductivity input error alarm when A $\Box \Box$ output is ON.		
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	 Not available if Transmission output 2 (TA2 option) is ordered. 		
	Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.0 or 0.00, Conductivity input error alarm is dis		
RIOF	A1 conductivity input error alarm time	0 seconds	
<i>0</i>	when A output ON		
	• Sets time to assess A1 conductivity input error alarm when	$A \sqcup \Box$ output is ON.	
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	• Setting range:		
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input	
	error alarm time unit].)		
R IEc	When set to 0, Conductivity input error alarm is disabled. A1 conductivity input error alarm band	0.00 mS/cm	
	when $A \square$ output OFF		
	Sets the band to assess A1 conductivity input error alarm when A output is OFF.		
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered.		
	• Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.		
RICT	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output OFF		
	• Sets time to assess A1 conductivity input error alarm when	$A \square \square$ output is OFF.	
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Setting range:		
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input	
	error alarm time unit].)		
חרה	When set to 0, Conductivity input error alarm is disabled.		
8260	A2 conductivity input error alarm band	0.00 mS/cm	
000	when A output ON		
	• Sets the band to assess A2 conductivity input error alarm when A output is ON.		
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)		
	is ordered.		
	• Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.		

Character	Setting Item, Function, Setting Range	Factory Default		
8265	A2 conductivity input error alarm time	0 seconds		
	 when A output ON Sets time to assess A2 conductivity input error alarm when A output is ON. Refer to 'Conductivity Input Error Alarm' on p.38. 			
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)			
	is ordered.			
	Setting range:			
	0 to 9999 seconds or minutes (Time unit follows the select	tion in [Conductivity input		
	error alarm time unit].)			
	When set to 0, Conductivity input error alarm is disabled.			
AZEc	A2 conductivity input error alarm band	0.00 mS/cm		
0	when A OFF			
	 Sets the band to assess A2 conductivity input error alarm w 	when A \Box output is OFF.		
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	Not available if Transmission output 1 (TA option) or Transr	mission output 2 (TA2 option)		
	is ordered.			
	Setting range:			
Conductivity range low limit to Conductivity range high limit				
07 C	When set to 0.0 or 0.00, Conductivity input error alarm is di			
82cſ	A2 conductivity input error alarm time	0 seconds		
<u> </u>	when A output OFF			
	• Sets time to assess A2 conductivity input error alarm when A output is OFF.			
	Refer to 'Conductivity Input Error Alarm' on p.38.	minetien eutrut 2 (TA2 entiers)		
	 Not available if Transmission output 1 (TA option) or Transr is ordered. 	nission output 2 (TA2 option)		
	Setting range:			
	tion in [Conductivity input			
	error alarm time unit].) When set to 0, Conductivity input error alarm is disabled.			
ñ_ 5	Conductivity input error alarm time unit	Second(s)		
5Ec	Selects conductivity input error alarm time unit.			
••= •= •	Selection item:			
	$\neg E \subset \square$: Second(s)			
	\vec{n} \vec{n} : Minute(s)			

Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if Conductivity input error alarm time has elapsed – if conductivity input does not become higher than conductivity input error alarm band – the instrument assumes that actuator trouble has occurred, and sets Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when \mathcal{E}_{c} , \mathcal{L} (Conductivity input low limit action) or \mathcal{E}_{c} , \mathcal{H} (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

9. Calibration

Conductivity calibration mode, Temperature calibration mode, and Transmission output 1 and 2 adjustment modes are described below.

9.1 Conductivity Calibration Mode

Deterioration of the 4-electrode Conductivity Sensor might cause the cell constant to change. To correct the changed cell constant, conductivity calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. During conductivity calibration, A action is forced OFF.

However, if $L \Box c \downarrow (Lock 1)$, $L \Box c c \downarrow (Lock 2)$ or $L \Box c c \downarrow (Lock 3)$ is selected in [Set value lock (p.31)], the unit cannot move to Conductivity calibration mode.

The following outlines the procedure for conductivity calibration.

- ① When selecting bEFH (Last value HOLD) in [Transmission output 1 status when calibrating (p.33)] or [Transmission output 2 status when calibrating (p.33)], select it while the 4-electrode Conductivity Sensor is being immersed in the solution currently measured.
- 2 Do not immerse the 4-electrode Conductivity Sensor in the standard solution.
- ^③ Press and hold the 🖂 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit enters Conductivity calibration Zero adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	$B \exists \Box \Xi$ and conductivity are indicated alternately.	
Temperature Display	Conductivity Zero adjustment value	

④ Set the Conductivity Zero adjustment value with the △ or ▽ key so that the conductivity becomes 0. If conductivity is 0, this adjustment is not necessary.

Setting range of the Conductivity Zero adjustment value differs depending on the measurement range. See (Table 9.1-1.). (p. 40)

However, it is effective within the measurement range regardless of the Conductivity Zero adjustment value.

(Table 9.1-1)

Measurement Range		Conductivity Zero Adjustment Value Setting Range	
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 500 mS/cm	-50 to 50 mS/cm	
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm	
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm	
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm	
	0 to 2000 µS/cm	-200 to 200 µS/cm	
	0 to 5000 µS/cm	-500 to 500 µS/cm	
0.11	0.000 to 2.000 S/m	-0.200 to 0.200 S/m	
Cell	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
constant 1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
1.0/011	0.0 to 50.0 S/m	-5.0 to 5.0 S/m	
	0 to 2000 mS/m	-200 to 200 mS/m	
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m	
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m	
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m	
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L	
	0 to 200 g/L	-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 mg/L	-200 to 200 mg/L	
	0 to 5000 mg/L	-500 to 500 mg/L	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 2000 mS/cm	-200 to 200 mS/cm	
Cell	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
constant	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
10.0/cm	0.0 to 200.0 S/m	-20.0 to 20.0 S/m	
	0 to 200 g/L	-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 g/L	-200 to 200 g/L	
Seawater sal	linity 0.00 to 4.00%	-0.40 to 0.40%	
NaCl salinity	0.00 to 20.00%	-2.00 to 2.00%	

 \bigcirc Press the RESET key.

Conductivity Zero adjustment value will be registered, and the unit will move to Conductivity calibration Span adjustment mode.

The following is indicated in Conductivity calibration Span adjustment mode.

Display	Indication
Conductivity Display	$B a J \gamma$ and conductivity are indicated alternately.
Temperature Display	Conductivity Span adjustment value

⁶ Immerse the 4-electrode Conductivity Sensor in the standard solution.

 Set the Conductivity Span adjustment value with the or key, checking the conductivity. Conductivity multiplied by the Span adjustment value is displayed.
 Conductivity Span adjustment value: 0.700 to 1.300

8 Press the street key.

Conductivity Span adjustment value will be registered, and the unit will revert to Conductivity/ Temperature Display Mode.

9.2 Temperature Calibration Mode

To calibrate a temperature, set a temperature calibration value.

If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], Temperature calibration mode is not available.

The unit cannot enter Temperature calibration mode in the following cases: • When $\angle \Box \Box \dashv (Lock 1), \angle \Box \Box \dashv (Lock 2)$ or $\angle \Box \Box \dashv (Lock 3)$ is selected in [Set value lock (p.31)].

When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value. Temperature after calibration = Current temperature + (Temperature calibration value) (e.g.) When current temperature is 23.5° C,

If temperature calibration value is set to 1.5° C: $23.5 + (1.5) = 25.0^{\circ}$ C If temperature calibration value is set to -1.5° C: $23.5 + (-1.5) = 22.0^{\circ}$ C

The following outlines the procedure for temperature calibration.

(1) Press and hold the 🖾 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit proceeds to Temperature calibration mode, and indicates the following.

Display	Indication	
Conductivity Display	הם and temperature are indicated alternately.	
Temperature Display	Temperature calibration value	

② Set a temperature calibration value with the △ or ▽ key, checking temperature. Setting range: -10.0 to 10.0°C

③ Press the 📰 key.

Temperature calibration is complete, and the unit reverts to Conductivity/Temperature Display Mode.

9.3 Transmission Output 1 Adjustment Mode

Fine adjustment of Transmission output 1 is performed.

WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

Transmission output 1 adjustment mode is available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 1 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c \dashv$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 1 adjustment.

 Press and hold the △ key and [™] key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters Transmission output 1 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJE I
Temperature Display	Transmission output 1 Zero adjustment value

- ② Set a Transmission output 1 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span
- ③ Press the [™] key.

The unit enters Transmission output 1 Span adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	RU4 1	
Temperature Display	Transmission output 1 Span adjustment value	

- ④ Set a Transmission output 1 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.).
 Setting range: ±5.00% of Transmission output 1 span
- \bigcirc Press the \bigcirc key.

The unit reverts to Transmission output 1 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

6 To finish Transmission output 1 adjustment, press the 🔤 key in Transmission output 1 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

9.4 Transmission Output 2 Adjustment Mode

Fine adjustment of Transmission output 2 is performed.

WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 2 Zero and Span adjustments.

Transmission output 2 adjustment mode is available only when Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 2 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c J$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 2 adjustment.

The unit enters Transmission output 2 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJEZ
Temperature Display	Transmission output 2 Zero adjustment value

② Set a Transmission output 2 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span

③ Press the [™] key.

The unit enters Transmission output 2 Span adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	8342
Temperature Display	Transmission output 2 Span adjustment value

- ④ Set a Transmission output 2 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span
- \bigcirc Press the \bigcirc key.

The unit reverts to Transmission output 2 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

6 To finish Transmission output 2 adjustment, press the 🔤 key in Transmission output 2 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

10. Measurement

10.1 Starting Measurement

After mounting to the control panel, wiring, setup and calibration are complete, turn the power to the instrument ON.

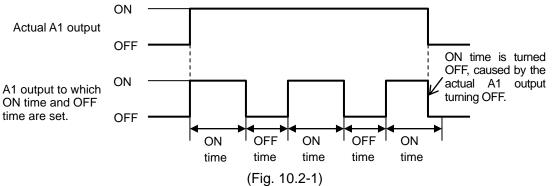
For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table 10.1-1).

Display	Character	Measurement Unit	
Conductivity Display	conð	Conductivity (mS/cm, μ S/cm)	
	5/	Conductivity (S/m, mS/m)	
	5 <i>E R</i>	Seawater salinity (%)	
	58LF	NaCl salinity (%)	
	[dh]]	TDS conversion (g/L, mg/L)	
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.30)
Temperature Display	PF[]2	DI400	F/ Z': 2-wire type
	PF 3	Pt100	P/ 3-wire type
	PF 10	Pt1000	

(*) This input temperature specification was specified at the time of ordering.

During this time, all outputs are in OFF status, and the LED indicators except PWR Indicator are unlit. Measurement will then start, indicating the item selected in [Display selection (p.34)].

10.2 A Output


When $\mathcal{E}_{\mathcal{A}}\mathcal{L}$ (Conductivity input low limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}$ (Conductivity input high limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{L}$ (Temperature input low limit action), or $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{H}$ (Temperature input high limit action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds or drops below the A value.

When $\mathcal{E}_{\mathcal{C}}HL$ (Conductivity input High/Low limits independent action), $\mathcal{F}_{\mathcal{O}}HL$ (Temperature input High/Low limits independent action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds the A High/Low limits independent action upper side span, or drops below the lower side span.

A1 or A2 output is turned ON depending on the selection in [A1/A2 output allocation (p.35)] and in [Output ON time/OFF time when A1/A2 output is ON (pp. 35, 36)].

If Output ON time and OFF time are set, A1 or A2 output can be turned ON/OFF in a configured cycle when A1 or A2 output is ON. (Fig. 10.2-1)

A output status can be read by reading Status flag 1 (A11, A12, A21, A22 output flag bit) in Serial communication.

A output status, when input errors occur, differs depending on the selection in [A output when input errors occur (p.29)].

- If $\Box \not \vdash \not \vdash \Box$ (Disabled) is selected, A \Box output and A \Box output status will be turned OFF when input errors occur.
- If policy (Enabled) is selected, A output and A output status will be maintained when input errors occur.

10.3 Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if conductivity input error alarm time (pp. 37, 38) has elapsed, and if conductivity input does not become higher than conductivity input error alarm band (pp. 37, 38), the unit assumes that actuator trouble has occurred, and writes Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when $\mathcal{E}_{\mathcal{L}}\mathcal{L}$ (Conductivity input low limit action) or $\mathcal{E}_{\mathcal{L}}\mathcal{H}$ (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

10.4 Error Output

If $\mathcal{E} \cap \mathcal{A}^{\mathcal{F}}$ (Error output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Error". See (Table 10.6-1).

10.5 Fail Output

If FRL = (Fail output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Fail". See (Table 10.6-1).

10.6 Error Code during Measurement

For Temperature sensor error or outside temperature compensation range during measurement, their corresponding error codes flash on the Temperature Display as shown below in (Table 10.6-1).

(10000000						
Error Code	Error Type	Error Contents	Description	Occurrence		
E-01	Fail	Temperature sensor burnout	Temperature sensor lead wire is burnt out.			
8-82	Fail	Temperature sensor short-circuited	Temperature sensor lead wire is short-circuited.	When measuring		
8-83	Error	Outside temperature compensation range	Measured temperature has exceeded 110.0°C.	or calibrating		
E-04	Error	Outside temperature compensation range	Measured temperature is less than 0.0℃.			

(Table 10.6-1)

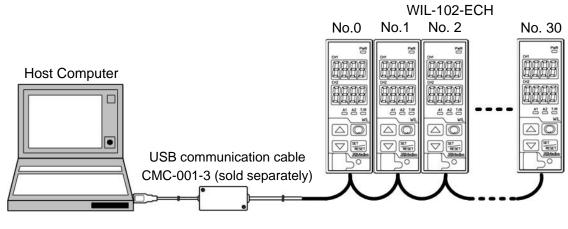
10.7 Transmission Output 1 and 2

Converting conductivity or temperature to analog signal every input sampling period, outputs in current. (Factory default: Transmission output 1: Conductivity, Transmission output 2: Temperature)

If $\Box \not \vdash \not \vdash \Box$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], and if $\not \vdash \Box \neg \not \vdash \Box \neg \vdash \Box$ (Temperature transmission) is selected in [Transmission output 1 or 2 type (p.32)], Transmission output 1 or 2 value differs depending on the selection in [Temperature Display when no temperature compensation (p.34)].

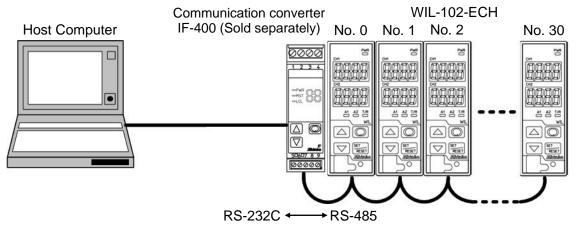
- If ロケケロ (Unlit) or 'ヮ, ロロ (Reference temperature) is selected, the value set in [Reference temperature (p.30)] will be output.
- If PB (Measured value) is selected, the measured value will be output.

If Transmission output 1 high limit and low limit are set to the same value, Transmission output 1 will be fixed at 4 mA DC.


If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC.

Resolution	12000		
Current	4 to 20 mA DC (Load resistance: Max 550 Ω)		
Output accuracy	Within $\pm 0.3\%$ of Transmission output 1 or 2 span		

11. Communication


11.1 System Configuration Example

When Using USB Communication Cable CMC-001-3 (sold separately)

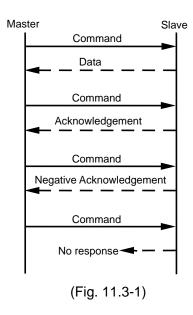
(Fig. 11.1-1)

When Using Communication Converter IF-400 (sold separately)

(Fig. 11.1-2)

11.2 Setting Method of the Conductivity Meter

Communication parameters can be set in the Basic Function Group. To enter the Basic Function Group, follow the procedure below.


- (1) af.E.r Press the \square key 3 times in Conductivity/Temperature Display Mode.
- $2 \subset \overline{n} L$ Press the **Example** key twice. "Communication protocol" will appear.
- ③ Set each item. (Use the \bigtriangleup or \bigtriangledown key for settings, and register the selection/value with the \blacksquare

key.)				
Character	Setting Item, Function, Setting Range	Factory Default		
cā51	Communication protocol	Shinko protocol		
noñL	Selects communication protocol.			
	Selection item:			
	nonL : Shinko protocol			
	nod H : MODBUS ASCII mode			
-	nodr : MODBUS RTU mode			
cñno	Instrument number	0		
Ū	 Sets the instrument number. The instrument numbers should be set one by one when multiple instruments 			
	connected in Serial communication, otherwise communi	•		
	Setting range: 0 to 95			
cā5P	Communication speed	9600 bps		
95	Selects a communication speed equal to that of the host computer.			
	Selection item:			
	5000 bps			
	☐ <i>1</i> 52 : 19200 bps			
	<i>∃B닉</i> : 38400 bps			
cāFF	Data bit/Parity	7 bits/Even		
7E8n	Selects data bit and parity.			
	Selection item:			
	ອີດອດ : 8 bits/No parity			
	דים ה' 7 bits/No parity			
	<i>呂E呂</i> っ : 8 bits/Even			
	<i>ובצה</i> : 7 bits/Even			
	ಕೆಂದರೆ : 8 bits/Odd			
	ੀਠਰੋਰ : 7 bits/Odd			
cกี่ ५/	Stop bit	1 bit		
1	Selects the stop bit.			
	Selection item:			
	: 1 bit			
	$\Box \Box c$: 2 bits			

Press the set with the set of t

11.3 Communication Procedure

Communication starts with command transmission from the host computer (hereafter Master) and ends with the response of the WIL-102-ECH (hereafter Slave).

• Response with Data

When the master sends the reading command, the slave responds with the corresponding set value or current status.

Acknowledgement

When the master sends the setting command, the slave responds by sending acknowledgement after the processing is terminated.

Negative Acknowledgement

When the master sends a non-existent command or value out of the setting range, the slave returns a negative acknowledgement.

No Response

The slave will not respond to the master in the following cases:

- Global address (Shinko protocol) is set.
- Broadcast address (MODBUS protocol) is set.
- · Communication error (framing error, parity error)
- Checksum error (Shinko protocol), LRC discrepancy (MODBUS ASCII mode), CRC-16 discrepancy (MODBUS RTU mode)

Communication Timing of the RS-485

Master Side (Take note while programming)

When the master starts transmission through the RS-485 communication line, the master is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the command to ensure synchronization on the receiving side.

Set the program so that the master can disconnect the transmitter from the communication line within a 1-character transmission period after sending the command in preparation for reception of the response from the slave.

To avoid collision of transmissions between the master and the slave, send the next command after carefully checking that the master has received the response.

If a response to the command is not returned due to communication errors, set the Retry Processing to send the command again. (It is recommended to execute Retry twice or more.)

Slave Side

When the slave starts transmission through the RS-485 communication line, the slave is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the response to ensure synchronization on the receiving side.

The slave is arranged so as to disconnect the transmitter from the communication line within a 1-character transmission period after sending the response.

11.4 Shinko Protocol

11.4.1 Transmission Mode

Shinko protocol is composed of ASCII. Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters. Data format Start bit: 1 bit

Start bit: 1 bit Data bit: 7 bits Parity: Even Stop bit: 1 bit

Error detection: Checksum

11.4.2 Command Configuration

All commands are composed of ASCII.

The data (set value, decimal number) is represented by hexadecimal numbers.

The negative numbers are represented in 2's complement.

Numerals written below the command represent number of characters.

(1) Setting Command

Header (02H)	Address	Sub address (20H)	Command type (50H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
	(Fig	g. 11.4.2-1)					

(2) Reading Command

Header (02H)	Address	Sub address (20H)	Command type (20H)	Data item	Checksum	Delimiter (03H)
1	1	1	1	4	2	1
	/ _ -					

(Fig. 11.4.2-2)

(3) Response with Data

Header (06H)	Address	Sub address (20H)	Command type (20H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
	(Fig	g. 11.4.2-3)					

(4) Acknowledgement

1	<u></u>							
	Header (06H)	Address	Checksum	Delimiter (03H)				
	1	1	2	1				
		(Fig. 11.4.2-4)						

(5) Negative Acknowledgement

Header (15H)	Address	Error code	Checksum	Delimiter (03H)		
1	1	1	2	1		
(Fig. 11.4.2-5)						

Header:

Control code to represent the beginning of the command or the response. ASCII codes are used.

Setting command, Reading command: STX (02H) fixed

Response with data, Acknowledgement: ACK (06H) fixed

Negative acknowledgement: NAK (15H) fixed

Instrument Number (Address): Numbers by which the master discerns each slave.

Instrument numbers 0 to 94 and Global address 95.

ASCII codes (20H to 7FH) are used by adding 20H to instrument numbers 0 to 95 (00H to 5FH).

95 (7FH) is called Global address, which is used when the same command is sent to all the slaves connected. However, the response is not returned.

Sub Address: 20H fixed

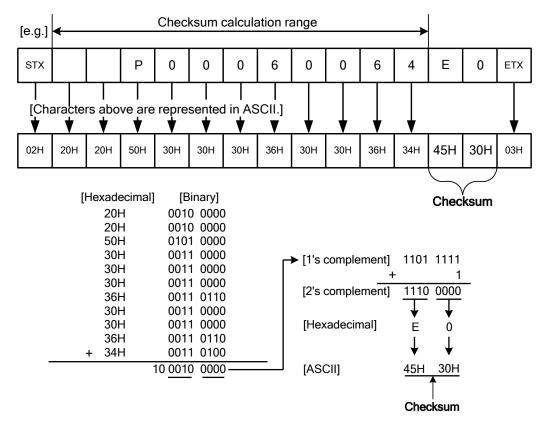
Command Type: Code to discern Setting command (50H) and Reading command (20H).

Data Item:	Classification of the command object. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Data:	The contents of data (set value) differ depending on the setting command. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Checksum:	2-character data to detect communication errors. (Refer to "11.4.3 Checksum Calculation".) (p.50)
Delimiter:	Control code to represent the end of command. ASCII code ETX (03H) fixed
Error Code:	 Represents an error type, using ASCII. 1 (31H)Non-existent command 2 (32H)Not used 3 (33H)Setting outside the setting range 4 (34H)Status unable to be set (e.g. During calibration mode) 5 (35H)During setting mode by keypad operation

11.4.3 Checksum Calculation

Checksum is used to detect receiving errors in the command or data. Set the program for the master side as well to calculate the checksum of the response data from the slaves so that communication errors can be checked.

The ASCII code (hexadecimal) corresponding to the characters which range from the address to that before the checksum is converted to binary notation, and the total value is calculated. The lower one byte of the total value is converted to 2's complement, and then to hexadecimal numbers, that is, ASCII code for the checksum.


• 1's complement: Reverse each binary bit. 0 will become 1 and vice versa.

• 2's complement: Add 1 to 1's complement.

Checksum Calculation Example

A11 value: 1.00 (0064H)

Address (instrument number): 0 (20H)

(Fig. 11.4.3-1)

11.5 MODBUS Protocol

11.5.1 Transmission Mode

There are 2 transmission modes (ASCII and RTU) in MODBUS protocol.

ASCII Mode

Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters.

Data format Start bit: 1 bit Data bit: 7 bits (8 bits) (Selectable) Parity: Even (No parity, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection : LRC (Longitudinal Redundancy Check)

RTU Mode

8-bit binary data in command is transmitted as it is.

Data format Start bit: 1 bit

Data bit: 8 bits

Parity: No parity (Even, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection: CRC-16 (Cyclic Redundancy Check)

11.5.2 Data Communication Interval

ASCII Mode

Max.1 second of interval between ASCII mode characters

RTU Mode

Communication speed 9600 bps, 19200 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 1.5-character transmission times.

Communication speed 38400 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 750 μ s.

If an interval lasts longer than 1.5-character transmission times or 750 μ s, the WIL-102-ECH assumes that transmission from the master is finished, which results in a communication error, and will not return a response.

11.5.3 Message Configuration

ASCII Mode

ASCII mode message is configured to start by Header [: (colon)(3AH)] and end by Delimiter [CR (carriage return) (0DH) + LF (Line feed)(0AH)].

Header	Slave	Function	Data	Error Check	Delimiter	Delimiter
(:)	Address	Code	Dala	LRC	(CR)	(LF)

RTU Mode

Communication speed 9600 bps, 19200 bps: RTU mode is configured to start after idle time is processed for more than 3.5-character transmissions, and end after idle time is processed for more than 3.5-character transmissions.

Communication speed 38400 bps: RTU mode is configured to start after idle time is processed for more than 1.75 ms, and end after idle time is processed for more than 1.75 ms.

3.5 Idle	Slave	Function	Doto	Error Check	3.5 Idle
Characters	Address	Code	Dala	CRC-16	Characters

(1) Slave Address

Slave address is an individual instrument number on the slave side, and is set within the range 0 to 95 (00H to 5FH).

The master identifies slaves by the slave address of the requested message.

The slave informs the master which slave is responding to the master by placing its own address in the response message.

Slave address 00H (Broadcast address) can identify all the slaves connected. However, slaves do not respond.

(2) Function Code

The function code is the command code for the slave to undertake the following action types. **(Table 11.5.3-1)**

Function Code	Contents
03 (03H)	Reading the set value and information from slaves
06 (06H)	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master. When acknowledgement is returned, the slave simply returns the original function code.

When negative acknowledgement is returned, the MSB of the original function code is set as 1 for the response.

(For example, when the master sends request message setting 10H to the function code by mistake, slave returns 90H by setting the MSB to 1, because the former is an illegal function.)

For negative acknowledgement, the exception codes below (Table 11.5.3-2) are set to the data of the response message, and returned to the master in order to inform it of what kind of error has occurred.

(Table 11.5.3-2)

<u> </u>	
Exception Code	Contents
1 (01H)	Illegal function (Non-existent function)
2 (02H)	Illegal data address (Non-existent data address)
3 (03H)	Illegal data value (Value out of the setting range)
17 (11H)	Shinko protocol error code 4 [Status unable to be set (e.g.) During calibration mode]
18 (12H)	Shinko protocol error code 5 (During setting mode by keypad operation)

(3) Data

Data differs depending on the function code.

A request message from the master is composed of data item, amount of data and setting data. A response message from the slave is composed of the byte count, data and exception codes in negative acknowledgements, corresponding to the request message. Effective range of data is -32768 to 32767 (8000H to 7FFFH).

(4) Error Check

ASCII Mode

After calculating LRC (Longitudinal Redundancy Check) from the slave address to the end of data, the calculated 8-bit data is converted to two ASCII characters, and are appended to the end of message.

How to Calculate LRC

- ① Create a message in RTU mode.
- 2 Add all the values from the slave address to the end of data. This is assumed as X.
- ^③ Make a complement for X (bit reverse). This is assumed as X.
- 4 Add a value of 1 to X. This is assumed as X.
- ^⑤ Set X as an LRC to the end of the message.
- ⁶ Convert the whole message to ASCII characters.

RTU Mode

After calculating CRC-16 (Cyclic Redundancy Check) from the slave address to the end of the data, the calculated 16-bit data is appended to the end of message in sequence from low order to high order.

How to calculate CRC-16

In the CRC-16 system, the information is divided by the polynomial series. The remainder is added to the end of the information and transmitted. The generation of a polynomial series is as follows. (Generation of polynomial series: $X^{16} + X^{15} + X^2 + 1$)

- ① Initialize the CRC-16 data (assumed as X) (FFFFH).
- 2 Calculate exclusive OR (XOR) with the 1st data and X. This is assumed as X.
- ③ Shift X one bit to the right. This is assumed as X.
- When a carry is generated as a result of the shift, XOR is calculated by X of ③ and the fixed value (A001H). This is assumed as X. If a carry is not generated, go to step ⑤.
- (5) Repeat steps (3) and (4) until shifting 8 times.
- $^{\textcircled{6}}$ XOR is calculated with the next data and X. This is assumed as X.
- \bigcirc Repeat steps \bigcirc to \bigcirc .
- (8) Repeat steps (3) to (5) up to the final data.
- ⁽⁹⁾ Set X as CRC-16 to the end of message in sequence from low order to high order.

11.5.4 Message Example

ASCII Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (30H 30H 30H 31H).

Header	Slave Address	Function Code	Data Item [0080H]	Amount of Data [0001H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 30H 38H 30H)	(30H 30H 30H 31H)	-	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in normal status [1.00 mS/cm (0064H)] The response byte count means the byte count of the data which has been read.

It is fixed as (30H 32H).

Header	Slave Address	Function Code	Response Byte Count [02H]	Data [0064H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 32H)	(30H 30H 36H 34H)	(39H 36H)	(0DH 0AH)
1	2	2	2	4	2	2

• Response message from the slave in exception (error) status (When a data item is incorrect) The function code MSB is set to 1 for the response message in exception (error) status (83H). The exception code 02H (Non-existent data address) is returned (error)

пе ехсер				ess) is returne	
Header	Slave	Function	Exception Code	Error Check	Delimiter
	Address	Code	[02H]	LRC	
(3AH)	(30H 31H)	(38H 33H)	(30H 32H)	(37H 41H)	(0DH 0AH)
1	2	2	2	2	2

⁽²⁾ Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

-							
	Header	Slave	Function	Data Item	Data	Error Check	Delimiter
		Address	Code	[0006H]	[0064H]	LRC	
	(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
	1	2	2	4	4	2	2

· Response message from the slave in normal status

rteepene	e meeeage i									
Header	Slave	Function	Data Item	Data	Error Check	Delimiter				
	Address	Code	[0006H]	[0064H]	LRC					
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)				
1	2	2	4	4	2	2				

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code 03H (Value out of the setting range) is returned (error)

The exception code 05H (value out of the setting range) is returned (error).									
Header	Slave	Function	Exception Code	Error Check	Delimiter				
	Address	Code	[03H]	LRC					
(3AH)	(30H 31H)	(38H 36H)	(30H 33H)	(37H 36H)	(0DH 0AH)				
1	2	2	2	2	2				

RTU Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (0001H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Data Item (0080H)	Amount of Data (0001H)	Error Check CRC-16 (85E2H)	3.5 Idle Characters
L	1	1	2	2	2	<u> </u>

• Response message from the slave in normal status [1.00 mS/cm (0064H)]

The response byte count means the byte count of the data which has been read. It is fixed as (02H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Response Byte Count (02H)	Data (0064H)	Error Check CRC-16 (B9AFH)	3.5 Idle Characters
	1	1	1	2	2	

• Response message from the slave in exception (error) status (When data item is incorrect). The function code MSB is set to 1 for the response message in exception (error) status (83H).

	he excep	tion code	(02H:	Non	i-exist	ent	data	address) is r	eturned	(error)	•
1			_		_		-					

3.5 Idle Characters	Slave Address (01H)	Function Code (83H)	Exception Code (02H)	Error Check CRC-16 (C0F1H)	3.5 Idle Characters	
	1	1	1	2		

② Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in normal status

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code (03H: Value out of the setting range) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (86H)	Exception Code (03H)	Error Check CRC-16 (0261H)	3.5 Idle Characters	
	1	1	1	2		

11.6 Communication Command Table

11.6.1 Notes about Setting/Reading Command

- The data (set value, decimal) is converted to hexadecimal numbers. A negative number is represented in 2's complement.
- When connecting multiple slaves, the address (instrument number) must not be duplicated.
- Data item 0200H to 0209H (User save area 1 to 10) can be read or set in 1 word units.
- Effective range of data is -32768 to 32767 (8000H to 7FFFH).
- MODBUS protocol uses Holding Register addresses. The Holding Register addresses are created as follows. A Shinko command data item is converted to decimal number, and the offset of 40001 is added. The result is the Holding Register address.

Using Data item 0001H (Sensor cell constant) as an example:

- Data item in the sending message is 0001H, however, MODBUS protocol Holding Register address is 40002 (1 + 40001).
- Even if options are not ordered, setting or reading via software communication will be possible. Command contents of the A11, A12, A21, A22 will function, however, Transmission output 1 and 2 command contents will not function.

(1) Setting Command

- Up to 1,000,000 (one million) entries can be stored in non-volatile IC memory. If the number of settings exceeds the limit, the data will not be saved. So, ensure the set values are not frequently changed via software communication. (If a value set via software communication is the same as the value before the setting, the value will not be written in non-volatile IC memory.)
- Be sure to select Lock 3 when changing the set value frequently via software communication. If Lock 3 is selected, all set values – except Sensor cell constant, Measurement unit, Measurement range, Conductivity Zero and Span adjustment values, Temperature calibration value, Transmission output 1 Zero and Span adjustment values, Transmission output 2 Zero and Span adjustment values – can be temporarily changed. However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory. Do not change setting items (A11, A12, A21 and A22 types). If they are changed, they will affect other setting items.
- Setting range of each item is the same as that of keypad operation.
- When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used.
- If A11, A12, A21 or A22 type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. The output status of A11, A12, A21 or A22 will also be initialized.
- Settings via software communication are possible while in Set value lock status.
- Communication parameters such as Instrument Number, Communication Speed of the slave cannot be set by software communication. They can only be set via the keypad. (p.47)
- When sending a command by Global address [95 (7FH), Shinko protocol] or Broadcast address [00H, MODBUS protocol], the same command is sent to all the slaves connected. However, the response is not returned.

(2) Reading Command

• When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used for a response.

11.6.2 Setting/Reading Command

Shinko Command Type	MODBUS		Data Item	Data	
50H/20H	06H/03H	0001H	Sensor cell constant	0000H: 1.0/cm 0001H: 10.0/cm	
50H/20H	06H/03H	0002H	Cell constant correction value	Set value	
50H/20H	06H/03H	0003H	Measurement unit	0000H: Conductivity (mS/cm, µS/cm) 0001H: Conductivity (S/m, mS/m) 0002H: Seawater salinity (%) 0003H: NaCl salinity (%) 0004H: TDS conversion (g/L, mg/L)	
50H/20H	06H/03H	0004H	Measurement range	When 1.0/cm is selected in [Sensor cell constant], and Conductivity (mS/cm, #S/cm) in [Measurement unit]: 0000H: 0.00 to 20.00 mS/cm 0002H: 0.0 to 500.0 mS/cm 0003H: 0 to 5000 mS/cm 0003H: 0 to 5000 mS/cm 0005H: 0.000 to 5.000 mS/cm 0006H: 0.00 to 50.00 mS/cm 0007H: 0 to 2000 #S/cm 0006H: 0.00 to 50.00 mS/cm 0007H: 0 to 2000 #S/cm 0007H: 0 to 2000 #S/cm 0008H: 0 to 5000 mS/cm 0007H: 0 to 2000 #S/cm 0008H: 0 to 5000 #S/cm 0007H: 0 to 2000 #S/cm 0008H: 0 to 5000 #S/cm 0001H: 0.00 to 5.000 S/m 0001H: 0.00 to 2.000 S/m 0002H: 0.00 to 50.00 S/m 0002H: 0.00 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0005H: 0.000 to 5.000 S/m 0006H: 0.0 to 20.0 mS/m 0006H: 0.0 to 20.0 mS/m 0007H: 0.0 to 50.0 S/m 0006H: 0.0 to 20.0 g/L 0007H: 0.0 to 20.0 g/L 0000H: 0.0 to 20.0 g/L 0000H: 0 to 20.0 g/L 0002H: 0 to 5000 mg/L 0000H: 0.0 to 20.0 mS/cm 0001H: 0 to 500.0 mS/cm 0002H: 0 to 2000 mS/cm 0001H: 0.0 to 50.0 S/m 0001H: 0.0 to 50.00 S/m	

Shinko Command			Data Item	Data
Туре	Code			When 10.0/cm is selected in [Sensor
				cell constant], and TDS conversion
				(g/L, mg/L) in [Measurement unit]:
				0000H: 0 to 200 g/L
				0001H: 0 to 500 g/L 0002H: 0 to 2000 g/L
				000211. 0 10 2000 g/E
				When Seawater salinity (%) is
				selected in [Measurement unit]:
				0000H: 0.00 to 4.00%
				When NaCl salinity (%) is selected in
				[Measurement unit]:
	0011/0011			0000H: 0.00 to 20.00%
50H/20H	06H/03H	0005H	A11 type	0000H: No action 0001H: Conductivity input low limit
				action
				0002H: Conductivity input high limit
				action 0003H: Temperature input low limit
				action
				0004H: Temperature input high limit
				action 0005H: Error output
				0006H: Fail output
				0007H: Conductivity input High/Low
				limits independent action
				0008H: Temperature input High/Low
50H/20H	06H/03H	0006H	A11 value	limits independent action Set value
50H/20H	06H/03H	0007H	A11 ON side	Set value
50H/20H	06H/03H	0008H	A11 ON delay time	Set value
50H/20H	06H/03H	0009H	A11 OFF delay time	Set value
50H/20H	06H/03H	000AH	Conductivity input filter time constant	Set value
50H/20H	06H/03H	000BH	TDS conversion factor	Set value
50H/20H	06H/03H	0020H	Temperature	0000H: Temperature characteristics of
			compensation method	NaCl 0001H: Temperature coefficient (%/°C)
				and a randomly selected
				reference temperature.
5011/0011	0011/0011	000411	Townson to a construction of the second	0002H: No temperature compensation
50H/20H 50H/20H	06H/03H 06H/03H	0021H	Temperature coefficient Reference temperature	Set value Set value
50H/20H 50H/20H	06H/03H 06H/03H	0022H 0023H	Temperature input	0000H: No decimal point
001//2011		002011	decimal point place	0001H: 1 digit after decimal point
50H/20H	06H/03H	0029H	Temperature input filter	Set value
	0011/0511		time constant	
50H/20H	06H/03H	0030H	Set value lock	0000H: Unlock 0001H: Lock 1
				0002H: Lock 2
				0003H: Lock 3
50H/20H	06H/03H	0031H	Transmission output 1	0000H: Conductivity transmission
5011/0011	0011/0011	000011	type	0001H: Temperature transmission
50H/20H	06H/03H	0032H	Transmission output 1 high limit	Set value
50H/20H	06H/03H	0033H	Transmission output 1 low limit	Set value
50H/20H	06H/03H	0034H	Auto-light function	0000H: Disabled
			-	0001H: Enabled

Shinko Command Type	MODBUS Function Code		Data Item	Data		
50H/20H	06H/03H	0035H	Display selection	DataConductivity DisplayTemperature Display0000HConductivityTemperature0001HConductivityNo indication0002HNo indicationTemperature0003HNo indicationNo indication		
50H/20H	06H/03H	0036H	Indication time	Set value		
50H	06H	0040H	Temperature calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Temperature calibration mode		
50H/20H	06H/03H	0041H	Temperature calibration value	Set value		
50H	06H	0042H	Conductivity calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Conductivity calibration Zero adjustment mode 0002H: Conductivity calibration Span adjustment mode		
50H/20H	06H/03H	0043H	Conductivity Zero adjustment value	Set value		
50H/20H	06H/03H	0044H	Conductivity Span adjustment value	Set value		
50H/20H	06H/03H	0045H	A output when input errors occur	0000H: Enabled 0001H: Disabled		
50H/20H	06H/03H	0046H	Cable length correction	Set value		
50H/20H	06H/03H	0047H	Cable cross-section area	Set value		
50H/20H	06H/03H	0048H	Output ON time when A1 output is ON	Set value		
50H/20H 50H/20H	06H/03H 06H/03H	0049H 004AH	Output OFF time when A1 output is ON Output ON time	Set value		
50H/20H	06H/03H	004AH	when A2 output is ON Output OFF time	Set value Set value		
50H/20H	06H/03H	0050H	when A2 output is ON	000H: No action		
				 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		
50H/20H	06H/03H	0051H		 000H: No action 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		

Shinko Command	MODBUS Function		Data Item	Data	
Туре	Code				
50H/20H	06H/03H	0052H	A22 type	0000H: No action 0001H: Conductivity input low limit action 0002H: Conductivity input high limit action 0003H: Temperature input low limit action 0004H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low	
50H/20H	06H/03H	0053H	A12 value	Set value	
50H/20H	06H/03H	0054H	A21 value	Set value	
50H/20H	06H/03H	0055H	A22 value	Set value	
50H/20H	06H/03H	0056H	A12 ON side	Set value	
50H/20H	06H/03H	0057H	A21 ON side	Set value	
50H/20H	06H/03H	0058H	A22 ON side	Set value	
50H/20H	06H/03H	0059H	A12 ON delay time	Set value	
50H/20H	06H/03H	005AH	A21 ON delay time	Set value	
50H/20H	06H/03H	005BH	A22 ON delay time	Set value	
50H/20H	06H/03H	005CH	A12 OFF delay time	Set value	
50H/20H	06H/03H	005DH	A21 OFF delay time	Set value	
50H/20H	06H/03H	005EH	A22 OFF delay time	Set value	
50H/20H	06H/03H	0068H	Conductivity input	Set value	
001/2011	001//0011	000011	sensor correction		
50H/20H	06H/03H	0069H	Temperature Display when no temperature compensation	0000H: Unlit 0001H: Reference temperature 0002H: Measured value	
50H/20H	06H/03H	006AH	A1 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types	
50H/20H	06H/03H	006BH	A2 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types	
50H/20H	06H/03H	006FH	Pt100 input wire type	0000H: 2-wire type 0001H: 3-wire type	
50H	06H	007FH	Key operation change flag clearing	0001H: Clear change flag	

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H/20H	06H/03H	0100H	A11 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0101H	A12 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0102H	A21 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0103H	A22 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0104H	A11 OFF side	Set value
50H/20H	06H/03H	0105H	A12 OFF side	Set value
50H/20H	06H/03H	0106H	A21 OFF side	Set value
50H/20H	06H/03H	0107H	A22 OFF side	Set value
50H/20H	06H/03H	010FH	Transmission output 1 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value
50H/20H	06H/03H	0110H	Transmission output 1 value HOLD when calibrating	Set value
50H/20H	06H/03H	0111H	A1 conductivity input error alarm A U type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0112H	A2 conductivity input error alarm A U type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0115H	A1 conductivity input error alarm band when A output ON	Set value
50H/20H	06H/03H	0116H	A1 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	0117H	A1 conductivity input error alarm band when A output OFF	Set value
50H/20H	06H/03H	0118H	A1 conductivity input error alarm time when A output OFF	Set value
50H/20H	06H/03H	0119H	A2 conductivity input error alarm band when A output ON	Set value
50H/20H	06H/03H	011AH	A2 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	011BH	A2 conductivity input error alarm band when A output OFF	Set value
50H/20H	06H/03H	011CH	A2 conductivity input error alarm time when A output OFF	Set value

Shinko Command Type	mmandFunctionData ItemTypeCode		Data Item	Data
50H/20H	06H/03H	0125H	Conductivity input error alarm time unit	0000H: Second(s) 0001H: Minute(s)
50H	06H	0126H	Transmission output 1 adjustment mode	0000H: Conductivity/Temperature Display Mode 0001H: Transmission output 1 Zero adjustment mode 0002H: Transmission output 1 Span adjustment mode
50H/20H	06H/03H	0127H	Transmission output 1 Zero adjustment value	Set value
50H/20H	06H/03H	0128H	Transmission output 1 Span adjustment value	Set value
50H/20H	06H/03H	0131H	3-electrode Conductivity Sensor resistance	Set value
50H/20H	06H/03H	0139H	A11 High/Low limits independent lower side span	Set value
50H/20H	06H/03H	013AH	A12 High/Low limits independent lower side span	Set value
50H/20H	06H/03H	013BH	A21 High/Low limits independent lower side span	Set value
50H/20H	06H/03H	013CH	A22 High/Low limits independent lower side span	Set value
50H/20H	06H/03H	013DH	A11 High/Low limits independent upper side span	Set value
50H/20H	06H/03H	013EH	A12 High/Low limits independent upper side span	Set value
50H/20H	06H/03H	013FH	A21 High/Low limits independent upper side span	Set value
50H/20H	06H/03H	0140H	A22 High/Low limits independent upper side span	Set value
50H/20H	06H/03H	0141H	A11 hysteresis	Set value
50H/20H	06H/03H	0142H	A12 hysteresis	Set value
50H/20H	06H/03H	0143H	A21 hysteresis	Set value
50H/20H	06H/03H	0144H	A22 hysteresis	Set value
50H/20H	06H/03H	0147H	Transmission output 2 type	0000H: Conductivity transmission 0001H: Temperature transmission
50H/20H	06H/03H	0148H	Transmission output 2 high limit	Set value
50H/20H	06H/03H	0149H	Transmission output 2 low limit	Set value
50H	06H	014AH	Transmission output 2 adjustment mode (*)	0000H: Conductivity/Temperature display mode 0001H: Transmission output 2 Zero adjustment mode 0002H: Transmission output 2 Span adjustment mode
50H / 20H	06H/03H	014BH	Transmission output 2 Zero adjustment value	Set value
50H / 20H	06H/03H	014CH	Transmission output 2 Span adjustment value	Set value
50H / 20H	06H/03H	014DH	Transmission output 2 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value

(*) If 'Setting' is executed while Transmission output 2 (TA2 option) is not ordered, the following error code will be returned.
Shinko protocol: Error code 4 (34H)
Modbus: Exception code 17 (11H)

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H / 20H	06H/03H	014EH	Transmission output 2 value HOLD when calibrating	Set value
50H / 20H	06H/03H	0151H	Conductivity inputs for moving average	Set value
50H / 20H	06H/03H	0152H	Temperature inputs for moving average	Set value
50H / 20H	06H/03H	0200H	User save area 1	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0201H	User save area 2	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0202H	User save area 3	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0203H	User save area 4	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0204H	User save area 5	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0205H	User save area 6	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0206H	User save area 7	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0207H	User save area 8	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0208H	User save area 9	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0209H	User save area 10	-32768 to 32767 (8000H to 7FFFH)

11.6.3 Read Only Command

Shinko Command Type	MODBUS Function Code		Data	Item			Data
20H	03H	0080H	Conductivit	y (*)		Conductivity	
20H	03H	0080H	Status flag 1 0000 0000 0000 0000 2 ¹⁵ to 2 ⁰ 2 ⁰ digit: Temperature sensor burnout 0: Normal 1: Burnout 2 ¹ digit: Temperature sensor short-circuited 0: Normal 1: Short-circuited 2 ² digit: Outside temperature compensation range: Exceeding 110.0°C 0: Normal 1: Exceeding 110.0°C 2 ³ digit: Outside temperature compensation range: Less than 0.0°C 0: Normal 1: Less than 0.0°C 2 ⁴ digit: Outside measurement range of conductivity measured value, salinity and TDS conversion (high limit) 0: Normal 1: Outside high limit 2 ⁵ digit: Outside measurement range of conductivity measured value, salinity and TDS conversion (low limit) 0: Normal 1: Outside low limit 2 ⁶ digit: A11 output flag 0: OFF 1: ON 2 ⁸ digit: A21 output flag 0: OFF 1: ON 2 ⁹ digit: A22 output flag 0: OFF 1: ON				
			2 ¹⁰ digit: No 2 ¹¹ digit: Ur		0	• •	perature Display Mode
			- 10 10 - 1	_		ting mode	
					nductivity calib	ation status fla	g
			2 ¹³	2 ¹²	O an alta di lita f	Status	
			0	0		Temperature Di Ictivity calibrati	
			0	T	adjustment m		
			1	0		ctivity calibrati	on Span
			2 ¹⁴ digit: A1		it	0: OFF	1: ON
0011	0011	000011	0		in key operatio		1: Yes
20H	03H	0090H	Temperatu	re		Temperature	

Shinko Command Type	MODBUS Function Code			Data I	tem		Data
20H	03H	0091H		s flag 2			
				0000			
			2 ¹⁵	•.	to	20	
			2 ⁰ dig			sed (Always (
			2^{1} dig	digits:	A2 ou Not u	ised (Always (0: OFF 1: ON
				digits:			ut 1 adjustment status flag
				2 ⁵	2 ⁴		Status
				0	0	Conductivity	/Temperature Display Mode
				0	1		mission output 1 Zero adjustment
						-	ion output 1 adjustment mode
				1	0	During Trans	mission output 1 Span adjustment
						in Transmiss	ion output 1 adjustment mode
			2 ⁶ dig	jit: A1 c	onduc	tivity input erro	or alarm output flag
							0: OFF 1: ON
			2 ⁷ dig	jit: A2 c	onduc	tivity input erro	or alarm output flag
							0: OFF 1: ON
			2 ⁸ , 2 ⁹	digits:		smission outpu	ut 2 adjustment status flag
				2 ⁹	2 ⁸		Status
				0	0		Temperature Display Mode
				0	1	•	mission output 2 Zero adjustment
				4	0		ion output 2 adjustment mode
				1	0	•	mission output 2 Span adjustment
			0 10 -	44 11 1			ion output 2 adjustment mode
			2 ¹⁰ , 2 ¹¹ digits: Not used (Always 0) 2 ¹² , 2 ¹³ digits: Temperature calibration status flag				
			∠·-, ∠ 	¹⁰ algits 2 ¹³	2 ¹²		Status nag
				0	0	Conductivity	/Temperature Display Mode
				0	1		erature calibration
			2 ¹⁴ 2	•		· · ·	
						sed (Always (

(*): If 0002H [Seawater salinity (%)] is selected for data item 0003H (Measurement unit), the response data at the time of input short-circuit will be the fixed value 3000 (30.00 %).
 Also, if 0003H [NaCl salinity (%)] is selected, the response data at the time of input short-circuit will be the fixed value 2500 (25.00 %).

11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments via Communication Command

Via Communication Comman

11.7.1 Conductivity Calibration

Cell constant may vary due to deterioration of the 4-electrode Conductivity Sensor. To correct the varied cell constant, calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment.

The following outlines the procedure for conductivity calibration.

(1) Conductivity Zero adjustment

- (1) When selecting Last value HOLD (0000H) at Data item 010FH (Transmission output 1 status when calibrating) or 014DH (Transmission output 2 status when calibrating), select it while the 4-elctrode Conductivity Sensor is being immersed in the solution currently measured.
- ² At this stage, do not immerse the 4-elctrode Conductivity Sensor in the standard solution.
- ⁽³⁾ Set Data item 0042H (Conductivity calibration mode) to 0001H. The unit moves to Conductivity calibration Zero adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 01 (During Conductivity calibration Zero adjustment mode) will be returned.
- ④ Set the Conductivity Zero adjustment value at Data item 0043H (Conductivity Zero adjustment value) so that conductivity becomes 0 (zero).

When conductivity is 0 (zero), it is not necessary to adjust.

(5) Set Data item 0042H (Conductivity calibration mode) to 0000H.
 Conductivity Zero adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

(2) Conductivity Span adjustment

- ① Immerse the 4-elctrode Conductivity Sensor in the standard solution.
- 2 Set Data item 0042H (Conductivity calibration mode) to 0002H. The unit moves to Conductivity calibration Span adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 10 (During Conductivity calibration Span adjustment mode) will be returned.
- ^③ Set the Conductivity Span adjustment value at Data item 0044H (Conductivity Span adjustment value), while checking the conductivity.
- ④ Set Data item 0042H (Conductivity calibration mode) to 0000H. Conductivity Span adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Conductivity calibration cannot be performed while calibrating conductivity due to temperature compensation error, Conductivity measurement value error, etc., Error code 1 (Burnout, Shortcircuited, etc.) will be returned after 2⁰ to 2⁵ digits are read at Data item 0081H (Status flag 1). To cancel the error code, set Data item 0042H (Conductivity calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Conductivity Zero/Span adjustment value is set at Data item 0043H (Conductivity Zero adjustment value) or 0044H (Conductivity Span adjustment value) in Conductivity/Temperature Display Mode, the following error code will be returned.

- Shinko protocol: Error code 34H
- MODBUS protocol: Exception code 11H

11.7.2 Temperature Calibration

Temperature calibration is performed by setting temperature calibration value.

The following outlines the procedure for Temperature calibration.

① Set Data item 0040H (Temperature calibration mode) to 0001H. The unit moves to Temperature calibration mode.

If 2¹³, 2¹² digits are read at Data item 0091H (Status Flag 2), 01 (During temperature calibration) will be returned.

- ⁽²⁾ Set the Temperature calibration value at Data item 0041H (Temperature calibration value), while checking the temperature.
- ^③ Set Data item 0040H (Temperature calibration mode) to 0000H. Temperature calibration is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration cannot be performed while calibrating temperature due to input error, calibration value error, etc., Error code 1 (Burnout, Short-circuited, etc.) will be returned after 2^0 to 2^5 digits are read at Data item 0081H.

To cancel the error code, set Data item 0040H (Temperature calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration value is set at Data item 0041H (Temperature calibration value) in Conductivity/Temperature Display Mode, the following error code will be returned.

Shinko protocol: Error code 34H MODBUS protocol: Exception code 11H

11.7.3 Transmission Output 1 Adjustment

Fine adjustment of Transmission output 1 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

The following outlines the procedure for Transmission output 1 adjustment.

- Set Data item 0126H (Transmission output 1 adjustment mode) to 0001H. The unit moves to Transmission output 1 Zero adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 1 Zero adjustment in Transmission output 1 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 1 Zero adjustment value at Data item 0127H (Transmission output 1 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 1 span

- 3 Set Data item 0126H (Transmission output 1 adjustment mode) to 0002H. The unit moves to Transmission output 1 Span adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 1 Span adjustment in Transmission output 1 adjustment mode) will be returned.
- ④ Set Transmission output 1 Span adjustment value at Data item 0128H (Transmission output 1 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 1 span
- 5 Repeat steps 1 to 4 if necessary.
- ⁽⁶⁾ To finish Transmission output 1 adjustment, set Data item 0126H (Transmission output 1 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.7.4 Transmission Output 2 Adjustment

Fine adjustment of Transmission output 2 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 2 Zero and Span adjustments.

The following outlines the procedure for Transmission output 2 adjustment.

- Set Data item 014AH (Transmission output 2 adjustment mode) to 0001H. The unit moves to Transmission output 2 Zero adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 2 Zero adjustment in Transmission output 2 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 2 Zero adjustment value at Data item 014BH (Transmission output 2 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 2 span
- ③ Set Data item 014AH (Transmission output 2 adjustment mode) to 0002H.
 The unit moves to Transmission output 2 Span adjustment mode.
 If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 2 Span adjustment in Transmission output 2 adjustment mode) will be returned.
- Set Transmission output 2 Span adjustment value at Data item 014CH (Transmission output 2 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 2 span

- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 2 adjustment, set Data item 014AH (Transmission output 2 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.8 Notes on Programming Monitoring Software

11.8.1 How to Speed up the Scan Time

When monitoring multiple units of the WIL-102-ECH, set the program so that the requisite minimum pieces of data such as Data item 0080H (Conductivity), Data item 0090H (Temperature), Data item 0081H (Status flag 1), Data item 0091H (Status flag 2) can be read.

For other data, set the program so that they can be read only when their set value has been changed. This will speed up the scan time.

11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation

If any set value is changed by keypad operation, the instrument sets [0081H (Status flag 1) 2¹⁵: Change in key operation] to 1 (Yes).

There are 2 methods of reading the set value changes made by the front keypad.

(1) Reading Method 1

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then read all set values.
- ⁽²⁾ Clear [0081H (Status flag 1) 2¹⁵: Change in key operation], by setting Data item 007FH (Key operation change flag clearing) to 0001H (Clear change flag).

If 007FH (Key operation change flag clearing) is set to 0001H (Clear change flag) during the setting mode of the instrument, Error code 5 (35H, Shinko protocol) or Exception Code 18 (12H, MODBUS protocol) will be returned as a negative acknowledgement. And [0081H (Status flag 1) 2¹⁵: Change in key operation] cannot be cleared.

Set a program so that all set values can be read when a negative acknowledgement is returned.

③ Read all set values again after acknowledgement is returned.

(2) Reading Method 2

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then set 007FH (Key operation change flag clearing) to 0001H (Clear change flag).
- ⁽²⁾ Set the program depending on the acknowledgement or negative acknowledgement as follows.

When acknowledgement is returned:

Consider it as settings completed, and read all set values.

When Error code 5 (35H, Shinko protocol) or Exception code 18 (12H, MODBUS protocol) is returned as a negative acknowledgement:

Consider it as still in setting mode, and read the requisite minimum pieces of data such as 0080H (Conductivity), 0090H (Temperature), 0081H (Status flag 1), 0091H (Status flag 2), then return to step 1.

Thus, programs which do not affect the scan time can be created using the methods described above, even if set values on the monitoring software will not be updated until settings are complete.

11.8.3 Note when Sending All Set Values Simultaneously

• If A type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 0052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. Output status of A11, A12, A21 or A22 will also be initialized.

First, send the A11, A12, A21, A22 type, then send the A11, A12, A21, A22 value set at Data item 0006H (A11 value), 0053H (A12 value), 0054H (A21 value) and 0055H (A22 value).

12. Specifications 12.1 Standard Specifications

Rating

Rated Scale	Input			Input Range Resolution		
			Cell	0.00 to 20.00 m	nS/cm	0.01 mS/cm
			constant	0.0 to 200.0 ms	S/cm	0.1 mS/cm
			1.0/cm	0.0 to 500.0 mS	S/cm	0.1 mS/cm
				0 to 500 mS/cm	า	1 mS/cm
				0.000 to 2.000	mS/cm	0.001 mS/cm
				0.000 to 5.000	mS/cm	0.001 mS/cm
				0.00 to 50.00 m	nS/cm	0.01 mS/cm
				0 to 2000 µS/c	m	1 µS/cm
				0 to 5000 µS/c	m	1 ^µ S/cm
				0.000 to 2.000	S/m	0.001 S/m
				0.00 to 20.00 S	/m	0.01 S/m
				0.00 to 50.00 S	/m	0.01 S/m
				0.0 to 50.0 S/m		0.1 S/m
		>		0 to 2000 mS/n	n	1 mS/m
		ivity		0.000 to 5.000		0.001 S/m
	ivit	nct		0.0 to 200.0 ms		0.1 mS/m
	Conductivity	Conductivity		0.0 to 500.0 ms		0.1 mS/m
	puq	ŏ		0.0 to 20.0 g/L		0.1 g/L
	Ŭ			0 to 200 g/L		1 g/L
				0 to 500 g/L		1 g/L
			0 to 2000 mg/L		1 mg/L	
				0 to 5000 mg/L		1 mg/L
			Cell	0.0 to 200.0 ms		0.1 mS/cm
			constant	0.0 to 500.0 ms		0.1 mS/cm
			10.0/cm	0 to 2000 mS/c	m	1 mS/cm
				0.00 to 20.00 S		0.01 S/m
				0.00 to 50.00 S		0.01 S/m
				0.0 to 200.0 S/r		0.1 S/m
				0 to 200 g/L		1 g/L
				0 to 500 g/L		1 g/L
				0 to 2000 g/L		1 g/L
		Seawater	salinity	0.00 to 4.00%		0.01%
		NaCl salir	,	0.00 to 20.00%		0.01%
	Temper-	Pt100	iity	0.0 to 100.0℃		0.1℃
	ature	Pt1000		0.0 to 100.0℃		0.1℃
			re indicatio		lace is sel	
nput	 (*) For the temperature indication, decimal point place is selectabl 4-electrode Conductivity Sensor (Temperature element: Pt100) 					
			•	(Temperature ele		,
Power supply voltage	Model		WIL-102-ECH		WIL	-102-ECH 1
-	Power su voltage	Power supply				DC 50/60 Hz
	Allowable	-	85 to 264	V AC	/ AC 20 to 28 V AC/DC	

General Structure

External Dimensions	30 x 88 x 108 mm (W x H x D, including socket)			
Mounting	DIN rail			
Case	Material: Flame	-resistant resin, Color: Light gray		
Panel	Membrane shee	et		
Indication Structure	Display			
	Conductivity	Red LED 4-digits, character size: 10 x 4.6 m (H x W)		
	Display			
	Temperature	Red LED 4-digits, character size: 10 x 4.6 m (H x W)		
	Display			
	Action Indicators			
	PWR (Yellow) Lit when power supply is ON.			
	A1 (Red) Lit when A1 output is ON. (Unlit when TA2 option is added			
	A2 (Yellow) Lit when A2 output is ON. (Unlit when TA option of			
	option is added.)			
	T/R (Yellow)	Lit while in Serial communication TX output (transmitting).		
Setting Structure	Setting method: Input system using membrane sheet key			

Indication Performance

Repeatability	Conductivity:	±0.5% of input span			
	Salinity conversion:	±1% of input span			
	TDS conversion:	±1.5% of input span			
Linearity	Conductivity:	±0.5% of input span			
	Salinity conversion:	±1% of input span			
	TDS conversion:	±1.5% of input span			
Indication Accuracy	Temperature: ±1℃				
Input Sampling Period	250 ms (2 inputs)				
Time Accuracy	Within ±1% of setting time				

Standard Functions

Conductivity	Calibrate Conductivity Zero adjustment first, followed by Conductivity Span
Calibration	adjustment. However, if $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c J$
	(Lock 3) is selected in [Set value lock] (p.31), the unit cannot move to
	Conductivity calibration mode.
	In Conductivity Zero adjustment, adjustment is performed so that
	conductivity becomes 0, without immersing the 4-electrode Conductivity
	Sensor in the standard solution.
	In Conductivity Span adjustment, the 4-electrode Conductivity Sensor is
	immersed and adjustment is performed while checking conductivity.
	However, it is effective within the input rated range regardless of the
	adjustment value.
Temperature	When a sensor cannot be set at the exact location where measurement is
Calibration	desired, the resulting measured temperature may deviate from the
	temperature in the desired location. In this case, the desired temperature
	can be set for the desired location by setting a temperature calibration
	value. However, it is effective within the input rated range regardless of the
	temperature calibration value.

TDS Conv	version	TDS stands for Tot Conductivity of a dissolved gas.		Solids. sults from the amount	of salt, minerals or			
		Conductivity is an index indicating the total amount of a substance in a						
		solution, and TDS indicates only the amount of all dissolved so substances.						
		ingredient, such as solution in which	s NaCl, is in one ingredie	o compare the two so cluded. However, for co ent such as NaCl is inc e ingredient is included,	omparison between a cluded and the other			
			DS and conductivity are expressed with the following formula. For Conductivity SI unit (S/m, mS/m):					
		TDS $(g/L) = L$	(S/m) × K	× 10				
		TDS (mg/L) =	L(mS/m) ×	K × 10				
		For Conductivity	older unit (n	nS/cm, <i>µ</i> S/cm):				
		TDS (g/L) = L	,					
		TDS (mg/L) =	. ,					
				L: Conductivity	1			
Serial Col	mmunication	(1) Reading and se		e carried out from an ex	ternal computer.			
				perature and status				
		(3) Function chang	-	-				
		(4) Reading and se	-					
Cable	e Length	1.2 km (Max), Cable resistance value: Within 50 Ω (Terminators are not necessary, but if used, use 120 Ω minimum on both sides.)						
Comr Line	nunication	EIA RS-485						
Comr Metho	nunication od	Half-duplex communication						
Comr Spee	nunication d	9600, 19200, 38400 bps (Selectable by keypad)						
Metho		Start-stop synchronization						
Code	Form	ASCII, Binary						
Comr Proto	nunication col	Shinko protocol, MODBUS ASCII, MODBUS RTU (Selectable by keypad)						
Data	Bit/Parity	8 bits/No parity, 7 bits/No parity, 8 bits/Even, 7 bits/Even, 8 bits/Odd, 7 bits/Odd (Selectable by keypad)						
Stop	Bit	1, 2 (Selectable by	keypad)					
Error	Correction	Command request						
Error	Detection	ASCII), CRC-16 (N	ODBUS pro	,				
Data	Format	Communication	Shinko	MODBUS	MODBUS			
		Protocol Start bit	Protocol	ASCII	RTU			
		Data bit	7	7 (8) Selectable	8			
				Even (No parity, Odd)	o No parity (Even, Odd)			
		Parity	Even	Selectable	Selectable			
		Stop bit	1	1 (2) Selectable	1 (2) Selectable			

Insulation/Dielectric Strength

Circuit Insulation Configuration	Power supply A1 output or Transmission output 2 A2 output or Transmission output 1 Serial communication					
Dielectric Strength	Serial communication Serial communication					

Attached Functions

Set Value Lock	Lock 1: None of the set values can be changed.						
	Lock 2: Only A11, A12, A21 and A22	values can be changed.					
	Lock 3: All set values – except Sensor cell constant, Measurement unit,						
	Measurement range, Conductivity Zero and Span adjustment values,						
	Temperature calibration value, Transmission output 1 Zero and Span						
	adjustment values, Transmission output 2 Zero and Span adjustment						
	values – can be temporarily changed.						
	However, they revert to their p	revious value after the power is turned					
	off because they are not saved	d in the non-volatile IC memory.					
Conductivity Input	When a sensor cannot be set at the	e exact location where measurement is					
Sensor Correction	desired, the sensor-measured conduct	tivity may deviate from the conductivity in					
	the measured location. In such a case	e, desired conductivity can be obtained					
	by adding a sensor correction value	ue. However, it is effective within the					
	measurement range regardless of the	e sensor correction value.					
Outside Measurement	When the conductivity measured value, salinity conversion value or TDS						
Range	conversion factor is outside the measurement range:						
	Conductivity Display Temperature Display						
	Conductivity, salinity conversion Measured temperature						
	high limit or TDS conversion high						
	limit is flashing.						
	When measured temperature is outside the measurement range, the						
	following will be indicated.						
	Conductivity Display	Temperature Display					
	Measured conductivity	Less than 0.0℃: <i>돈ㄷ집Ч</i>					
	Measured conductivity Exceeding 110.0°C: $\mathcal{E} \subset \mathcal{D} \mathcal{B}$						
Power Failure	The setting data is backed up in the r	non-volatile IC memory.					
Countermeasure							
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status						
	occurs, the instrument is switched to						

Warm-up Indication	For approx. 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display.						
	Display	Cł	naracter	Measurement Unit			
		C I	onð	Conductivity (mS/cm)			
		· ۲		Conduct	tivity (S/m, mS	/m)	
	Conductiv	ity 🔓	E <i>R</i> []	Seawate	er salinity (%)		
	Display	5	RL <i>T</i>	NaCl sa	linity (%)		
		[]	d'h	TDS cor	TDS conversion (g/L)		
	Display		naracter		emperature fication (*)	Selection Iter Input Wire Ty	ype] (p.30)
	Tama arat		<u> </u>	D+1 00		<i>P/</i>	type
	Temperatu Display		ГШЭ	Pt100		<i>₽¦</i> Г∐∃: 3-wire	type
	Display	P;	םו ח	Pt1000			
	(*) This in	put tem	perature	specificat	tion was speci	fied at the time o	of ordering.
Display Sleep Function Auto-light Function Cable Length Correction	Conductivity, Temperature or No indication can be selected in [Display selection (p.34)], which is indicated in Conductivity/Temperature Display Mode. If Conductivity and/or Temperature is selected, and if indication time is set, the displays become unlit after the indication time has passed from no operation status. If any errors occur, or if any key is pressed, the display will re-light. If the indication time is set to 0, the display remains lit, and this function does not work. Automatically measures and controls brightness of the Conductivity Display, Temperature Display and action indicators. If $\mathcal{P}^{r} \square \mathcal{E}^{r}$ (2-wire type) is selected in [Pt100 input wire type (p. 30)], and if sensor cable is too long, temperature measurement error will occur due to						
	value and	cable	cross-sec	tion area.	- · · ·	g the cable leng	
Error Code					he Temperatur	e Display.	
	Error Code	Error Type	Con	ror tents		ription	Occurrence
	E-01	Fail	Temp. S burnout		Temperature wire is burnt		
	E-02	Fail	Temp. S short-ci		Temperature wire is short-		When measuring
	E-03	Error	Outside comper		Measured ter has exceede		or calibrating
					Measured ter is less than 0		
	(Abbreviation: Temp:: Temperature)						

O<u>ther</u>

Power Consumption	Approx. 8 VA
Ambient Temperature	0 to 50°C (32 to 122°F)
Ambient Humidity	35 to 85 %RH (non-condensing)
Altitude	2,000 m or less
Installation environment	Overvoltage category II , Pollution degree 2
Memory protection	Non-volatile IC memory (Number of writes: 1 million times)
Environmental Specification	RoHS directive compliant
Weight	Approx. 200 g (including the socket)
Accessories Included	Instruction manual: 1 copy Unit label: 1 sheet
Accessories Sold Separately	Socket: ASK-001-1 (Finger-safe and screw fall prevention)

12.2 Optional Specifications

A Output (Option Code: EVT or TA)

	Output (Option Cod				
A	Output	If the measured value exceeds the A			
		turned ON for each A			
		A1 or A2 output turns ON depending on the settings in [A1/A2 output			
		allocation (p.35)] and [Output ON time/OFF time when A1/A2 output ON			
		(pp.35, 36)].			
			, A output status can be read via		
		Status flag 1 (A11, A12, A21, A22 out	•		
			rors occur, differs depending on the		
		selection in [A \Box output when input	$[A \square]$ output when input errors occur		
			output status will be turned OFF if		
		input errors occur.			
			[A cutput when input errors occur		
			output status will be maintained if		
		input errors occur.	•		
		During conductivity calibration, A	action is forced OFF.		
		If Transmission output 1 (TA option) is	ordered, only A1 output can be added.		
	Action	ON/OFF action			
	A ON side,	Setting range differs depending on th	e selection of A $\Box\Box$ type and		
	A OFF side	measurement range.			
		Conductivity input			
		Cell constant 1.0/cm:			
		Measurement Range Setting Range			
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm		
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm		
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0.000 to 0.200 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm 0 to 5000 μ S/cm 0.000 to 2.000 S/m 0.00 to 20.00 S/m 0.00 to 50.00 S/m	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0 \ \text{to} \ 2000 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 10 \ \text{mS/m} \ 10 \ mS/$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{to} \ 10 \ \text{to} \ 10 \ \text{to} \ 10 \ t$	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ \mu{\rm S/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ \mu{\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm S/m} \end{array}$		
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mbox{\sc m} \\ \hline 0 \ \text{to} \ 5000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} $	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm \muS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm \muS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm mS/m} \ {\rm mS/m} \\ \hline 0.00 \ {\rm mS/m} \ $		
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 5000 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 5.00.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \ {\rm mS/m} \ \ {\rm mS/m} \$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 2.0 g/L		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 2000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 0 \ \text{to} \ 0 \ \text{to} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.0 S/m 0.00 to 5.00 S/m 0.00 to 0.500 S/m 0.00 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 g/L 0 to 20 g/L 0 to 50 g/L		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 0.000 to 50.00 S/m 0.00 to 50.00 mS/m 0.00 to 500.0 mS/m 0.0 to 200.0 g/L 0 to 200 g/L 0 to 500 g/L 0 to 500 g/L 0 to 2000 mg/L	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.0 S/m 0 to 200 mS/m 0.00 to 0.500 S/m 0.00 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 2.0 g/L 0 to 20 g/L 0 to 50 g/L 0 to 200 mg/L		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 2000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 5.000 \ \text{g/L} \ \ 0 \ \text{to} \ 0 \ \text{to} \ 0 \ \text{to} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.0 S/m 0.00 to 5.00 S/m 0.00 to 0.500 S/m 0.00 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 g/L 0 to 20 g/L 0 to 50 g/L		

	Cell constant 10.0/cm:				
	Measurement Range	Setting Range			
	0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm			
	0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm			
	0 to 2000 mS/cm	0 to 200 mS/cm			
	0.00 to 20.00 S/m	0.00 to 2.00 S/m			
	0.00 to 50.00 S/m	0.00 to 5.00 S/m			
	0.0 to 200.0 S/m	0.0 to 20.0 S/m			
	0 to 200 g/L	0 to 20 g/L			
	0 to 500 g/L	0 to 50 g/L			
	0 to 2000 g/L	0 to 200 g/L			
	Seawater salinity 0.00 to 4.00%	0.00 to 0.40%			
	NaCl salinity 0.00 to 20.00%	0.00 to 2.00%			
	• Tomporaturo input				
	Temperature input Measurement Range	Setting Range			
	0.0 to 100.0℃	0.0 to 10.0℃			
A High/Low		range low limit to Measurement range			
limits independent	high limit (*1)				
upper side span,	• Temperature input: 0.0 to 100.0°C	(*2)			
	(*1) Measurement unit and decimal point				
A High/Low	(*2) The placement of the decimal point d				
limits independent lower side span	(_, p				
lower slue spart					
Δ hysteresis	Setting range differs depending on	Δ type and measurement range			
ADD hysteresis		A type and measurement range.			
A hysteresis	Conductivity input	A□□ type and measurement range.			
A hysteresis	Conductivity input Cell constant 1.0/cm				
A hysteresis	Conductivity input	A type and measurement range. Setting Range 0.01 to 2.00 mS/cm			
A hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range	Setting Range			
A D hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm			
A . hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm			
A . hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm			
A ☐ hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm			
A ☐ hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm			
A ☐ hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm			
A ☐ hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm			
A ☐ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 50.0 mS/cm 1 to 50.0 mS/cm			
A □ □ hysteresis	• Conductivity input Cell constant 1.0/cm <u>Measurement Range</u> 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 JS/cm			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 0.001 to 0.200 S/m			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0.00 to 20.00 S/m 0.00 to 20.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.001 to 2.00 S/m			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0.000 \text{ to } 2.000 \ \text{S/m}$ $0.00 \text{ to } 20.00 \ \text{S/m}$ $0.00 \text{ to } 50.00 \ \text{S/m}$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 200 µS/cm 1 to 500 µS/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.0 S/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0 to 5000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/m 0.1 to 5.00 mS/m 1 to 200 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 20.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 1 to 200 mS/cm			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 s/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 s/m 1 to 200 mS/m 0.1 to 5.00 s/m 0.1 to 50.0 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m 0.00 to 5.000 mS/m 0.0 to 200.0 mS/m 0.0 to 500.0 mS/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 0.1 to 5.0 S/m 0.1 to 20.0 mS/m 0.1 to 50.0 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0 to 5000	0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 mS/cm 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 20.0 g/L 1 to 20 g/L			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 20.0 g/L 1 to 20 g/L 1 to 20 g/L 1 to 50 g/L			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0.00 to 50.00 S/m 0.00 to 50.00 mS/cm 0 to 2000 mS/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/m 0.0 to 20.00 mS/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m 0.1 to 2.0 g/L 1 to 20 g/L 1 to 20 g/L 1 to 50 g/L 1 to 200 mg/L			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 20.0 mS/m 0.1 to 20.0 g/L 1 to 20 g/L 1 to 20 g/L 1 to 50 g/L			

	Cell constant 10.0)/cm:			
	Measurement		Setting Range		
	0.0 to 200.0 mS/cm		0.1 to 20.0 mS/cm		
	0.0 to 500.0 mS/cm		0.1 to 50.0 mS/cm		
	0 to 2000 mS/cm		1 to 200 mS/cm		
	0.00 to 20.00 S/m		0.01 to 2.00 S/m		
	0.00 to 50.00 S/m		0.01 to 5.00 S/m		
	0.0 to 200.0 S/m		0.1 to 20.0 S/m		
	0 to 200 g/L		1 to 20 g/L		
	0 to 500 g/L		1 to 50 g/L		
	0 to 2000 g/L		1 to 200 g/L		
	Seawater salinity 0.00	0 to 4.00%	0.01 to 0.40%		
	NaCl salinity 0.00 to 2		0.01 to 2.00%		
	Temperature input Measurement		Setting Range		
	0.0 to 100.0℃		0.1 to 10.0℃		
А□□ Туре	One type can be sele • No action	cted from the fo	llowing via the keypad.		
	Conductivity input lo	w limit action			
	Conductivity input high limit action Temperature input low limit action				
	Temperature input low limit action Temperature input high limit action				
	• Error output [When the error type is "Error" (p.72), the output is turned ON.]				
		• •	Fail" (p.72), the output is turned ON.]		
	Conductivity input H	••			
	Temperature input H	•	•		
Output	Relay contact, 1a	0	•		
	Control capacity	3A 250 V AC (Resistive load)		
		1A 250 V AC (Inductive load $\cos\phi=0.4$)		
	Electrical life	100,000 cycles	S		
A ON delay	0 to 9999 seconds				
time					
A OFF delay	0 to 9999 seconds				
A1, A2 output	For A1 (or A2) output	, A11 type, A12 t	ype, A21 type and/or A22 type can be		
allocations	allocated. Output is OR output.				
Output ON time/	If Output ON time and	d OFF time are s	set, A1 (or A2) output can be turned		
OFF time when	ON/OFF in a configur	red cycle when A	1 (or A2) output is ON.		
A1/A2 output ON					
Conductivity input	Detects actuator trou	ble.			
error alarm	Even if conductivity in	nput error alarm	time has elapsed, and if conductivit		
	input does not becom	ne higher than c	onductivity input error alarm band, th		
	unit assumes that ac	ctuator trouble h	as occurred, and writes Status flag		
	(A1, A2 conductivity in	nput error alarm	output flag bit).		
	In Serial communica A2 conductivity input		be read by reading Status flag 2 (A1 but flag bit).		
			bled during Conductivity Zero or Spa		
	Conductivity input er	n) or <i>Ec_H</i> (C	bled only when $\mathcal{E}_{\mathcal{L}} \mathcal{L}$ (Conductivit conductivity input high limit action) i (pp.22, 23)].		

Transmission Output 1 (Option Code: TA)

Transmission Output 1	Converting conductivity or temperature to analog signal every input				
	sampling period, and outputs the value in current.				
	If $\sigma F F \square$ (No temperature compensation) is selected in [Temperature				
	compensation method (p.30)], and if $\int \mathcal{E} \vec{A} \mathcal{P}$ (Temperature transmission)				
	is selected in [Transm	nission output 1 type (p.32)], Transmission output 1			
	value will differ depen	ding on the selection in [Temperature Display when			
	no temperature comp	ensation (p.34)] as follows.			
	・If <i>ロドド</i> □ (Unlit) o	or $\neg \neg \neg d$ (Reference temperature) is selected, the			
	value set in [Refer	ence temperature (p.30)] will be output.			
	• If PB	red value) is selected, the measured value will be			
	output.				
	If Transmission output 1 high limit and low limit are set to the same value,				
	Transmission output 1 will be fixed at 4 mA DC.				
	Resolution 12000				
	Current 4 to 20 mA DC (Load resistance: Max. 550 Ω)				
	Output accuracy	Within ±0.3% of Transmission output 1 span			
Transmission	Fine adjustment of the	e Transmission output 1 can be performed via			
output 1 adjustment	Transmission output 1	Zero and Span adjustments.			
Transmission	Selects Transmission	output 1 status when calibrating conductivity.			
output 1 status	Last value HOLD Retains the last value before conductivity				
when calibrating	calibration, and outputs it.				
	Set value HOLD Outputs the value set in [Transmission output 1 value				
		HOLD when calibrating].			
	Measured value	Outputs the measured value when calibrating			
		conductivity.			

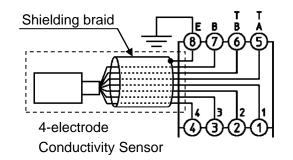
Transmission Output 2 (Option Code: TA2)

Transmission Output 2	Converting conductivity or temperature to analog signal every input			
	sampling period, and outputs the value in current.			
	If $\Box F F \Box$ (No temperature compensation) is selected in [Temperature			
	· · ·	• • •		
		od (p.30)], and if $\int E \overline{\rho} P$ (Temperature transmission)		
	=	mission output 2 type (p.32)], Transmission output 2		
	•	nding on the selection in [Temperature Display when		
		pensation (p.34)] as follows.		
	・If <i>ュ F F</i> (Unlit) (or $\neg f a \square$ (Reference temperature) is selected, the		
	value set in [Refer	ence temperature (p.30)] will be output.		
	• If <i>PB</i> (Measu	red value) is selected, the measured value will be		
	output.			
	If Transmission outpu	t 2 high limit and low limit are set to the same value,		
	Transmission output 2 will be fixed at 4 mA DC.			
	Resolution 12000			
	Current 4 to 20 mA DC (Load resistance: Max. 550 Ω)			
	Within ±0.3% of Transmission output 2 span			
Transmission	Fine adjustment of the	e Transmission output 2 can be performed via		
output 2 adjustment	Transmission output 2	2 Zero and Span adjustments.		
Transmission	Selects Transmission	output 2 status when calibrating conductivity.		
output 2 status	Last value HOLD Retains the last value before conductivity			
when calibrating	calibration, and outputs it.			
	Set value HOLD Outputs the value set in [Transmission output 2 value]			
	HOLD when calibrating].			
	Measured value	Outputs the measured value when calibrating		
		conductivity.		

13. Troubleshooting

If any malfunction occurs, refer to the following items after checking that power is being supplied to the WIL-102-ECH.

13.1 Indication


Problem	Possible Cause	Solution
The Conductivity/	nonE (No Indication) is selected	Select RLL (Conductivity/
Temperature Display is	in [Display selection (p.34)].	Temperature).
unlit.	The time set in [Indication time	If any key is pressed while displays
	(p.34)] has passed.	are unlit, they will re-light.
		Set the indication time to a suitable
		time-frame.
The Conductivity/	$L \neg E$ (Enabled) is selected in	Select (Disabled).
Temperature Display is dark.	[Auto-light function (p.34)].	
Indication of the	Conductivity calibration and	Perform conductivity calibration
Conductivity/Temperature	temperature calibration may not	and temperature calibration.
Display is unstable or	have finished.	
irregular.	Specifications of 4-electrode	Replace the sensor with a
	Conductivity Sensor may not be	suitable one.
	suitable.	
	There may be equipment that	Keep WIL-102-ECH clear of any
	interferes with or makes noise near	potentially disruptive equipment.
	the WIL-102-ECH.	Try [Grounding of shield wire
		terminal (E)].
Temperature Display is		Select '¬/¯ d 🗌 (Reference
unlit.	[Temperature Display when no	temperature) or PB
	temperature compensation (p.34)].	(Measured value).
$[\mathcal{E} \cap \mathcal{G} \]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is burnt out.	
$[E \cap G \overline{E}]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is short-circuited.	
$[E \cap G \exists]$ is flashing on the	Measured temperature has	Check the environment of
Temperature Display.	exceeded 110.0°୦.	measurement location.
$[E \cap G \cap G]$ is flashing on the	Measured temperature is less than	Check the environment of
Temperature Display.	0.0°C.	measurement location.
$[\mathcal{E} \neg \neg i]$ is indicating on	Internal memory is defective.	Contact our agency or us.
the Conductivity Display.		

• Grounding of shield wire terminal (E)

If the indication fluctuates due to noise, ground the shield wire terminal (E).

However, depending on the installation environment, the symptom may not be improved.

In this case, disconnect the grounding of the shield wire terminal (E) and return it to the original state. (Depending on the type of sensor, the cable for the shield wire terminal (E) may not be available.)

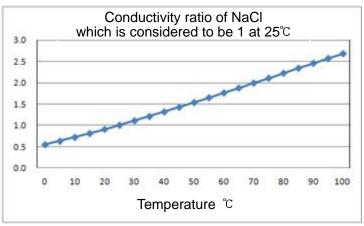
13.2 Key Operation

Problem	Possible Cause	Solution
None of the set values can	$L \Box c$ / (Lock 1) is selected in [Set	Select (Unlock).
be changed.	value lock (p.31)].	
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		
Only A value can be	$L \Box \Box \Box \overline{\Box}$ (Lock 2) is selected in [Set	Select (Unlock).
set. Other settings are	value lock (p.31)].	
impossible.		
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		

13.3 Communication

Check that power is being supplied to the master and slave that customers use. If communication failure still occurs, check the following.

Problem	Possible Cause	Solution
Communication failure	Communication cable is not	Check the communication cable
	securely connected, or is	and connector.
	disconnected/defective.	
	Incorrect wiring of the	Check the communication cable
	communication cable and/or	and connector.
	connector	Check the communication cable
	Imperfect contact between the communication cable and the	and connector.
	connector, or between the	
	communication connector and	
	instrument port	
	Communication speed of the slave	Check the communication speed
	does not match that of the master.	of the slave and master.
	The data bit, parity and stop bit of	Check the data bit, parity and
	the master do not correspond to	stop bit of the master and the
	those of the slave.	slave.
	The instrument number (address)	Check the instrument number
	of the slave does not correspond	(address) of the slave and
	to that of the command.	command.
	The instrument numbers	Check the instrument numbers
	(addresses) are duplicated in	(addresses) of the slave.
	multiple slaves.	
	Make sure that the program is	Check the program.
	appropriate for the transmission	
	timing.	
Although communication	A non-existent command code has	Check the command code.
is occurring, the response	been sent.	
is negative acknowledge-	The setting command data	Check the setting range of the
ment.	exceeds the setting range of the	slave.
	slave.	
	The WIL-102-ECH cannot be set	Check the slave status.
	during calibration mode.	
	The WIL-102-ECH is in the front	Return the unit to Conductivity/
	keypad operation setting mode.	Temperature Display Mode.


14. Temperature Compensation Method

14.1 Temperature Compensation Based on the Temperature Characteristics of NaCl

When the main ingredient of the salt contained in a sample is NaCl, use temperature compensation method based on the temperature characteristics of NaCl.

Conductivity of NaCl solution varies with the ratio based on the conductivity at 25° C as shown below. The conductivity at 25° C is calculated on the basis of the conductivity ratio at each temperature in (Table 14.1-1).

(Table 14.1-1)					
Tempera-	Conductivity	Coeffi-			
ture (°C)	ratio of NaCI	cient			
0	0.542	1.845			
5	0.626	1.596			
10	0.715	1.399			
15	0.806	1.240			
20	0.902	1.109			
25	1.000	1.000			
30	1.101	0.908			
35	1.205	0.830			
40	1.312	0.762			
45	1.420	0.704			
50	1.531	0.653			
55	1.643	0.609			
60	1.757	0.569			
65	1.872	0.534			
70	1.987	0.503			
75	2.103	0.476			
80	2.219	0.451			
85	2.335	0.428			
90	2.450	0.408			
95	2.564	0.390			
100	2.677	0.374			

(Fig.14.1-1)

14.2 How to Input Temperature Coefficient

Temperature compensation is conducted using temperature coefficient (%/ $^{\circ}$ C) and a randomly selected reference temperature.

Conductivity of the solution varies depending on the temperature.

If temperature rises by 1°C, the conductivity rises by 2% at 25°C basis in general.

Temperature coefficient differs depending on the solution type and its concentration, which ranges from 0.50 to 2.50.

By inputting the temperature coefficient, temperature compensation can be calculated to find the conductivity at 25°C.

Temperature coefficient 2.00 %/°C can be used for most of solutions.

If temperature coefficient of solution is already-known, enter the value. (Table 14.2-1)

If the conductivity at an arbitrary temperature $T^{\circ}C$ is already-known, and if reference temperature is $ST^{\circ}C$, conductivity $C_{(ST)}$ at the reference temperature can be obtained according to the following formula.

$$C_{(ST)} = \frac{C_{(T)}}{(1 + 0.01 \times \alpha \times (T - ST))}$$

 $C_{(ST)}$: Conductivity of the solution at ST[°]C

 $C_{(T)}$: Conductivity of the solution at T[°]C

- α : Temperature coefficient of conductivity (%)
- *T*: Arbitrary temperature $T^{\circ}C$
- ST: Reference temperature ST[℃]

T-LL		A A A
(Table	2 14.2	2-1)

(Table 14.2-1)							•	- ·	_	
Sub- stance	Tempe- rature (℃)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/°C)	Sub- stance	Tempe- rature (°C)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/°C)	
	(0)	5	19.69	2.01			5	6.72	2.17	
		10	31.24	2.01			10	12.11	2.17	
		10	34.63	2.17	NaCl	18	10	16.42	2.14	
NaOH	15	20	32.70	2.49	NaCi	10	20	19.57		
		30	20.22	4.50			20 25	21.35	2.16 2.27	
		40	11.64	6.48			<u></u> 5			
		25.2		2.09	Na ₂ SO ₄	10	10	4.09 6.87	2.36	
			54.03		INa2504	18			2.49	
KOH	15	29.4	54.34	2.21			15	8.86	2.56	
		33.6	52.21	2.36		10	5	4.56	2.52	
		42	42.12	2.83	Na ₂ CO ₃	18	10	7.05	2.71	
		0.1	0.0251	2.46			15	8.36	2.94	
	4.5	1.6	0.0867	2.38			5	6.90	2.01	
NH₃	15	4.01	0.1095	2.50		10	10	13.59	1.88	
		8.03	0.1038	2.62	KCI	18	15	20.20	1.79	
		16.15	0.0632	3.01			20	26.77	1.68	
		1.5	1.98	0.72			21	28.10	1.68	
HF	18	4.8	5.93	0.66			5	4.65	2.06	
		24.5	28.32	0.58	KBr	15	10	9.28	1.94	
		5	39.48	1.58			20	19.07	1.77	
HCI	18	10	63.02	1.56		N 15	3.25	5.07	2.07	
1101	10	20	76.15	1.54	KCN		6.5	10.26	1.98	
		30	66.20	1.52			-	-	-	
		5	20.85	1.21			5	9.18	1.98	
		10	39.15	1.28		₄CI 18	10	17.76	1.86	
	18	20	65.27	1.45			15	25.86	1.71	
		40	68.00	1.78			20	33.65	1.61	
H_2SO_4		50	54.05	1.93			25	40.25	1.54	
		60	37.26	2.13			5	5.90	2.03	
		80	11.05	3.49			15	10	11.17	1.94
		100.14	1.87	0.30	NH ₄ NO ₃	15	30	28.41	1.68	
		-	-	-			50	36.22	1.56	
		6.2	31.23				2.5	10.90	2.13	
		12.4	54.18		- CuSO₄		5	18.90	2.16	
HNO ₃	18	31	78.19			18	10	32.00	2.18	
-		49.6	63.41				15	42.10	2.31	
		62	49.64				10	15.26	1.69	
		10	5.66				15	16.19	1.74	
		20	11.29		CH3COOH		20	16.05	1.79	
H ₃ PO ₄	15	40	20.70			CH3COOH	DOH 18	30	14.01	1.86
		45	20.87					40	10.81	1.96
		50	20.73				60	4.56	2.06	

15. Character Tables

The following shows our character tables. Use data column for your reference.

Setting Groups

Character	Setting Group		
F.n.c. / Conductivity Input Group			
F.nc.2	Temperature Input Group		
alī.E.r	Basic Function Group		

Temperature Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
トロ (*)	Temperature calibration	0.0°C	
0	Setting range: -10.0 to 10.0℃		

(*) '- D and temperature are displayed alternately.

Conductivity Calibration Mode

Character	Setting Item, Setting Range Factory Default		Data
RdJΞ(*1)	Conductivity Zero adjustment value	0.00	
000	See (Table 15-1). (pp.81, 82)		
<i>吊占</i> 」」 ^ (*2)	Conductivity Span adjustment value	1.000	
1000	Setting range: 0.700 to 1.300		

(*1) $\frac{8}{2}$ d $\frac{1}{2}$ and conductivity are displayed alternately.

(*2) $\mathcal{F}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}}$ and conductivity are displayed alternately.

(Table 15-1)

Meas	urement Range	Conductivity Zero Adjustment Value Setting Range
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
	0 to 500 mS/cm	-50 to 50 mS/cm
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm
	0 to 2000 µS/cm	-200 to 200 µS/cm
	0 to 5000 μ S/cm	-500 to 500 µS/cm
0.1	0.000 to 2.000 S/m	-0.200 to 0.200 S/m
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00 S/m
1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m
1.0/Cill	0.0 to 50.0 S/m	-5.0 to 5.0 S/m
	0 to 2000 mS/m	-200 to 200 mS/m
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L
	0 to 200 g/L	-20 to 20 g/L
	0 to 500 g/L	-50 to 50 g/L
	0 to 2000 mg/L	-200 to 200 mg/L
	0 to 5000 mg/L	-500 to 500 mg/L

0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
0 to 2000 mS/cm	-200 to 200 mS/cm
0.00 to 20.00 S/m	-2.00 to 2.00 S/m
0.00 to 50.00 S/m	-5.00 to 5.00 S/m
0.0 to 200.0 S/m	-20.0 to 20.0 S/m
0 to 200 g/L	-20 to 20 g/L
0 to 500 g/L	-50 to 50 g/L
0 to 2000 g/L	-200 to 200 g/L
nity 0.00 to 4.00%	-0.40 to 0.40%
).00 to 20.00%	-2.00 to 2.00%
	0.0 to 500.0 mS/cm 0 to 2000 mS/cm 0.00 to 20.00 S/m 0.00 to 50.00 S/m 0.0 to 200.0 S/m 0 to 200 g/L 0 to 500 g/L 0 to 2000 g/L nity 0.00 to 4.00%

Transmission Output 1 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJEI	Transmission output 1 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 1 span	
8351	Transmission output 1 Span	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission output 1 span		

Transmission Output 2 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJEZ	Transmission output 2 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 2 span	
RJ42	Transmission output 2 Span	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission		

Conductivity Input Group

Character	Setting Item, Setting Range	Factory Default	Data	
CELL	Sensor cell constant	1.0/cm		
l	Selection item:			
	🗔 🖾 : 1.0/cm			
	<i>□ IΩ□</i> : 10.0/cm			
co£F	Cell constant correction value	1.000		
1000	Setting range: 0.001 to 5.000			
Uni F	Measurement unit			
conð	Selection item:			
	<i>டிப்ப</i> ி: Conductivity (mS/cm, <i>µ</i> S/cm)			
	ーン: Conductivity (S/m, mS/m)			
	$\neg EB$: Seawater salinity (%)			
	<i>ら吊にに</i> :NaCl salinity (%)			
	「ゴー」:TDS conversion (g/L, mg/L)			

Character	Setting Item, Setting	g Range	Factory Default	Data		
ār nū	Measurement range	<u> </u>	20.00 mS/cm			
2000	(Table 15-2)					
	When sensor cell cor	nstant 1.0/cm	n is selected:			
		Selection				
	Measurement Unit	item	Measurement Range			
		2000	0.00 to 20.00 mS/cm			
		2000	0.0 to 200.0 mS/cm			
		5000	0.0 to 500.0 mS/cm			
		500	0 to 500 mS/cm			
	Conductivity	2.000	0.000 to 2.000 mS/cm			
	(mS/cm, μ S/cm)	5000	0.000 to 5.000 mS/cm			
		5000	0.00 to 50.00 mS/cm			
		2000	0 to 2000 μ S/cm			
		5000	0 to 5000 <i>µ</i> S/cm			
		2.000	0.000 to 2.000 S/m			
		2000	0.00 to 20.00 S/m			
		5000	0.00 to 50.00 S/m			
	Conductivity	500	0.0 to 50.0 S/m			
	(S/m, mS/m)	2000	0 to 2000 mS/m			
		5000	0.000 to 5.000 S/m			
		2000	0.0 to 200.0 mS/m			
		5000	0.0 to 500.0 mS/m			
		200	0.0 to 20.0 g/L			
		200	0 to 200 g/L			
	TDS conversion	500	0 to 500 g/L			
	(g/L, mg/L)	2000	0 to 2000 mg/L			
		5000	0 to 5000 mg/L			
	Seawater salinity (%)	00	0.00 to 4.00%			
	NaCl salinity (%)	2000	0.00 to 20.00%			
			0.00 10 20.00 /8			
	When sensor cell constant 10.0/cm is selected:					
	Measurement Unit	Selection item	Measurement Range			
		2000	0.0 to 200.0 mS/cm			
	Conductivity	5000	0.0 to 500.0 mS/cm			
	(mS/cm)	2000	0 to 2000 mS/cm			
		2000	0.00 to 20.00 S/m			
	Conductivity	5000	0.00 to 50.00 S/m			
	(S/m, mS/m)	2000	0.0 to 200.0 S/m			
		200	0 to 200 g/L			
	TDS conversion	500	0 to 500 g/L			
	(g/L)	2000	0 to 2000 g/L			
	Seawater salinity (%)	0400	0.00 to 4.00%			
	NaCl salinity (%)	2000	0.00 to 20.00%			
Гдче	TDS conversion factor		0.50			
aso		1.00				
0.50	Setting range: 0.30 to	1.00				

Character	Setting Item, Setting Range	Factory Default	Data
RIIF	A11 type	No action	
	Selection item: E = -L: No action E = -L: Conductivity input low limit action		
	$E \subseteq H$: Conductivity input high limit a		
	「「「アビ」: Temperature input low limit ad 「「「アビ」: Temperature input high limit a		
	$\mathcal{E} \cap \mathcal{I}$: Err output		
	FBIL : Fail output		
	$\mathcal{E} \subset \mathcal{H} \mathcal{L}$: Conductivity input High/Low I	imits independent action	
	デービー: Temperature input High/Low	imits independent action	
R 12F	A12 type	No action	
	Selection item: Same as those of A11 t	ype (p.84)	
82 IF	A21 type	No action	
	Selection item: Same as those of A11 t	ype (p.84)	
RZZF	A22 type	No action	
	Selection item: Same as those of A11 t	ype (p.84)	
811	A11 value	Conductivity input: 0.00 mS/cm	
<u>aoo</u>		Temperature input: 0.0°C	
	Setting range:		
	Conductivity input: Measurement range low limit to Measurement range high limit (*1)		
	Temperature input:		
	0.0 to 100.0°℃ (*2)		
R 12	A12 value	Conductivity input: 0.00 mS/cm	
000		Temperature input: 0.0℃	
	Setting range: Same as those of A11 va		
<u>82 (</u>	A21 value	Conductivity input: 0.00 mS/cm	
		Temperature input: 0.0°C	
	Setting range: Same as those of A11 va		
822	A22 value	Conductivity input: 0.00 mS/cm	
000	Cotting rongo, Come of these of Add	Temperature input: 0.0°C	
RIId	Setting range: Same as those of A11 va		
	A11 hysteresis type	Reference value	
י ופר	Selection item: $= -\frac{1}{2} = \frac{1}{2}$ Modium volue		
	<i>ちぱ ^に</i> : Reference value		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting It	em, Setting Range	Factory Default	Data
8110	A11 ON side		Conductivity input: 0.01 mS/cm	
00 1			Temperature input: 1.0℃	
	(Table 15-3)			
	Conductivit			
	Mea	asurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 500 mS/cm	0 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.000 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.000 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm 0 to 2000 <i>µ</i> S/cm	0.00 to 5.00 mS/cm 0 to 200 <i>µ</i> S/cm	
		0 to 5000 µS/cm	0 to 500 µS/cm	
		0.000 to 2.000 S/m	0.000 to 0.200 S/m	
	Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
	1.0/cm	0.0 to 50.0 S/m	0.0 to 5.0 S/m	
		0 to 2000 mS/m	0 to 200 mS/m	
		0.000 to 5.000 S/m	0.000 to 0.500 S/m	
		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m	
		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m	
		0.0 to 20.0 g/L	0.0 to 2.0 g/L	
		0 to 200 g/L	0 to 20 g/L	
		0 to 500 g/L	0 to 50 g/L	
		0 to 2000 mg/L	0 to 200 mg/L	
		0 to 5000 mg/L	0 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 2000 mS/cm	0 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
	10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m	
		0 to 200 g/L	0 to 20 g/L	
		0 to 500 g/L	0 to 50 g/L	
	Converter	0 to 2000 g/L	0 to 200 g/L	
		salinity 0.00 to 4.00%	0.00 to 0.40% 0.00 to 2.00%	
	-	ty 0.00 to 20.00%		
	Temperatur	•		
		asurement Range	Setting Range	
	0.0 to 100.	010	0.0 to 10.0℃	
RIIL	A11 OFF side	Conductivity input: 0.01	mS/cm, Temperature input: 1.0℃	
I	Setting range	e: Same as those of A11 C	DN side (p.85)	
R 12d	A12 hysteresi	s type	Reference value	
SdF -	Selection ite	m: Same as those of A11	hysteresis type (p.84)	
R 12U	A12 ON side		mS/cm, Temperature input: 1.0°C	
		e: Same as those of A11 (
R IZL			mS/cm, Temperature input: 1.0℃	
<u> </u>	Setting rang	e: Same as those of A11 (ON side (P.85) Reference value	
ne io Sdl F		m: Same as those of A11		
	Selection ite	m. Same as mose of ATT	iysielesis iype (p.04)	

Character	Setting Item, Setting Range	Factory Default	Data	
N2 IU		mS/cm, Temperature input: 1.0°C		
⊡āo ī	Setting range: Same as those of A11 C	· · ·		
R2 IL	A21 OFF side Conductivity input: 0.01			
	Setting range: Same as those of A11 ON side (P.85)			
8224	A22 hysteresis type Reference value			
531 F	Selection item: Same as those of A11			
N22U		mS/cm, Temperature input: 1.0°C		
	Setting range: Same as those of A11 C			
822L	A22 OFF side Conductivity input: 0.01	u /		
	Setting range: Same as those of A11 C			
A i lo	A11 ON delay time	0 seconds		
	-	0 seconds		
	Setting range: 0 to 9999 seconds	0 accordo		
	A12 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds	0 accorde		
82 la 0	A21 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds	0 accorda		
a528	A22 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
R I Ic	A11 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
8 12c	A12 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
82 Ic	A21 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
<u>822c</u>	A22 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
RIIn	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm		
000	lower side span Conductivity input: Measurement range	Temperature input: 0.0°C		
	Measurement rang			
	Temperature input: 0.0 to 100.0°C (*2)			
8 IZn	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	Iower side span Setting range: Same as those of A11 H	Temperature input: 0.0°C		
:; / [, /] /]	lower side span (p.86)			
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm		
82 In	lower side span	Temperature input: 0.0°C		
000	Setting range: Same as those of A11 F	iign/Low limits independent		
	lower side span (p.86) A22 High/Low limits independent	Conductivity input: 0.00 mS/cm		
R22n	lower side span	Temperature input: 0.0℃		
000	Setting range: Same as those of A11 F			
<u></u>	lower side span (p.86)			
8 P	A11 High/Low limits independent upper side span	Conductivity input: 0.00 mS/cm Temperature input: 0.0℃		
	Conductivity input: Measurement range			
	Measurement rang			
<u> </u>	Temperature input: 0.0 to 100.0°C(*2)			
R 12P	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	upper side span Setting range: Same as those of A11 H	Temperature input: 0.0°C		
:; / [, /] /]	upper side span (p.86)			
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm		
AS IB	upper side span	Temperature input: 0.0℃		
000	Setting range: Same as those of A11 H	ligh/Low limits independent		
	upper side span (p.86) surement unit and decimal point place follow the r			

(*1) The measurement unit and decimal point place follow the measurement range.
 (*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting I	tem, Setting Range	Factory Default	Data
ASS5	-	Imits independent	Conductivity input: 0.00 mS/cm	
000	upper side sp		Temperature input: 0.0℃	
	Setting rang		ligh/Low limits independent	
8 I IH	A11 hystores	upper side span (p.86)	mS/cm, Temperature input: 1.0°C	
	(Table 15-4)			
	Conductivit	v input:		
		asurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 500 mS/cm	1 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm	
		0 to 2000 µS/cm	1 to 200 <i>µ</i> S/cm	
		0 to 5000 µS/cm	1 to 500 µS/cm	
		0.000 to 2.000 S/m	0.001 to 0.200 S/m	
	Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
	1.0/cm	0.0 to 50.0 S/m	0.1 to 5.0 S/m	
		0 to 2000 mS/m	1 to 200 mS/m	
		0.000 to 5.000 S/m	0.001 to 0.500 S/m	
		0.0 to 200.0 mS/m	0.1 to 20.0 mS/m	
		0.0 to 500.0 mS/m	0.1 to 50.0 mS/m	
		0.0 to 20.0 g/L	0.1 to 2.0 g/L	
		0 to 200 g/L	1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 mg/L	1 to 200 mg/L	
		0 to 5000 mg/L	1 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 2000 mS/cm	1 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
	constant 10.0/cm	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
	10.0/CIII	0.0 to 200.0 S/m 0 to 200 g/L	0.1 to 20.0 S/m 1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 g/L	1 to 200 g/L	
	Seawater	salinity 0.00 to 4.00%	0.01 to 0.40%	
		ity 0.00 to 20.00%	0.01 to 2.00%	
	Temperatur	•		
	-	asurement Range	Setting Range	
	0.0 to 100.		0.1 to 10.0℃	
8 IZH	A12 hysteres		mS/cm, Temperature input: 1.0°C	
<u></u>		e: Same as those of A11 h		
92 IX	A21 hysteres		mS/cm, Temperature input: 1.0°C	
		e: Same as those of A11 h		
H22H	A22 hysteres		mS/cm, Temperature input: 1.0°C	
		e: Same as those of A11 h		
l Err	•	when input errors occur	Disabled	
oFF[]	00 : En			
	aFF: Dis	sabled		

Character	Setting Item, Setting Range	Factory Default	Data
F: F :	Conductivity input filter time constant	0.0 seconds	
0.0	Setting range: 0.0 to 10.0 seconds		
E50	Conductivity input sensor correction	0.00 mS/cm	
000	Setting range: ±10% of measurement span (*)		
4E1-	3-electrode Conductivity Sensor resistance	0Ω	
<i>D</i>	Setting range: 0 to 100 Ω		
dFcf	Conductivity inputs for moving average	20	
20	Setting range: 1 to 120		

(*) The measurement unit and decimal point place follow the measurement range.

Temperature Input Group

Character	Setting Item, Setting Range	Factory Default	Data
[cn]	Temperature compensation method	NaCl	
nReL	nRcL: Temperature compensation is conducted using temperature		
	characteristics of NaCl. Select whe	en the main salt ingredient	
	in a sample is NaCl.		
	C ⊂ ⊂ E : Temperature compensation is conducted using temperature coefficient (%/°C) and a randomly selected reference temperature.		
	$\Box F F \square$: No temperature compensation		
EcoE	Temperature coefficient	2.00 %/°C	
2.00	Setting range: -5.00 to 5.00 %/°C		
hīnd	Reference temperature	25.0℃	
250	Setting range: 5.0 to 95.0°C (*)		
dP2	Decimal point place	1 digit after decimal point	
	\Box : No decimal point		
conE	Pt100 input wire type	3-wire type	
PF 3	$P\Gamma \square P$: 2-wire type		
c AbL	Pr 3 : 3-wire type	0.0 m	
	Cable length correction	0.0 m	
<u> </u>	Setting range: 0.0 to 100.0 m Cable cross-section area	0.30 mm ²	
	Setting range: 0.10 to 2.00 mm ²	0.30 mm	
FIFZ	Temperature input filter time constant	0.0 seconds	
		0.0 5600105	
	Setting range: 0.0 to10.0 seconds	00	
dFcF 20	Temperature inputs for moving average	20	
<i>E u</i>	Setting range: 1 to 120		

(*) The placement of the decimal point follows the selection.

Basic Function Group

Character	Setting Item, Setting Range	Factory Default	Data
Lock	Set value lock	Unlock	
	: Unlock		
	נסב ו' : Lock 1		
	<i>ಓದ್ದರೆ</i> : Lock 2		
	とっこ子 : Lock 3		
6756	Communication protocol	Shinko protocol	
noñL	הבהב : Shinko protocol		
	ನ್ನದ∄ : MODBUS ASCII mode		
	ನ್ರಾರ್ಡ : MODBUS RTU mode		
cāna	Instrument number	0	
<u> </u>	Setting range: 0 to 95		

Character	Setting Item, Setting Ra	ange	Factory Default	Data
c ก้ h P	Communication speed		9600 bps	
95	55 : 9600 bps		·	
	<i>1∃2</i> : 19200 bps			
	[]∃원닉 : 38400 bps			
c AFF	Data bit/Parity		7 bits/Even	
7E8n	ੋਹਰਨ : 8 bits/No parity			
	7 bits/No parity			
	8E日の : 8 bits/Even ゴE日の : 7 bits/Even			
	Badd : 8 bits/Odd			
	Todd : 7 bits/Odd			
<u>ะกั</u> รโ	Stop bit		1 bit	
	i : 1 bit			-
	\vec{z} : 2 bits			
Frai	Transmission output 1 type		Conductivity transmission	
Ec	E = : Conductivity transm	nission		
	FERP : Temperature transm			
ГгНІ	Transmission output 1 high lir		20.00 mS/cm	4
2000	Conductivity transmission: Tra		•	
			nge high limit	
FrL I	Temperature transmission: Tra Transmission output 1 low lim		0.00 mS/cm	
	Conductivity transmission: Co			
/ , /		•	utput 1 high limit	
	Temperature transmission: 0.0			
[ro2	Transmission output 2 type		Temperature transmission	
FEAP	E = : Conductivity transm	nission	· · ·	
	FERP : Temperature transm			
FrH2	Transmission output 2 high lir		100.0℃	
1888	Conductivity transmission: Tra		•	
		•	nge high limit	
Fri2	Temperature transmission: Tra Transmission output 2 low lim			
	•			-
	Conductivity transmission: Conductivity range low limit to Transmission output 2 high limit			
	Temperature transmission: 0.0			
Fre I	Transmission output 1 status		Last value HOLD	
ЬЕЕН	when calibrating			
	$b \in F H$: Last value HOLD			
	Set value HOLD			
[PHH : Measured value	Conduction	hy transmission: 0.00 - 0/ar-	
	Transmission output 1 value HOLD when calibrating		ty transmission: 0.00 mS/cm e transmission: 0.0℃	
	Conductivity transmission: Cor			1
	Conductivity range high limit			
	Temperature transmission: 0.0 to 100.0℃			
Tre2	Transmission output 2 status		Last value HOLD	
ЬЕЕН	when calibrating			
	$b \in F H$: Last value HOLD			
	ービー : Set value HOLD			
<u> </u>	PBH : Measured value			
[-42 	Transmission output 2 value HOLD when calibrating		ty transmission: 0.00 mS/cm re transmission: 0.0°C	
00	Conductivity transmission: Cor			1
			nge high limit	
	Temperature transmission: 0.0			

L I $\Box \Gamma$ Auto-light function Disabled $\Box + \Sigma$: Enabled $\Box + \Sigma$: Enabled $\Box + \Sigma$: Enabled $\Box + \Sigma$ Conductivity Display Temperature Display $R L L$ Display selection Conductivity Display Temperature Display $R L L$ Conductivity Display Temperature Display $R L L$ Conductivity No indication $\Gamma = \overline{\Sigma} P$ No indication Temperature $\overline{\Sigma} \Box P$ No indication No indication $\Gamma = \overline{\Sigma} P$ No indication No indication $\sigma = \overline{\Sigma} D$ Setting range: 00.00 (Remains lit) 00.00 $\sigma = \overline{D} P$ Temperature Display when Unlit $\sigma \in \overline{F}$: Unlit $\neg \overline{\Gamma} d$: Reference temperature $\sigma \in \overline{F}$: Unlit $\neg \overline{\Gamma} d$: Reference temperature $P M$: Measured value A	
USE : Enabled dl SP Display selection Conductivity Display Temperature Display RLL Conductivity Temperature Display RLL Conductivity Temperature RLL Conductivity Temperature RLL Conductivity Temperature RLL Conductivity No indication F No indication Temperature Dan E No indication Temperature Dan E No indication No indication Indication time 00.00 O0.00 Setting range: 00.00 (Remains lit) 00.00 OBDD Setting range: 00.00 (Minutes.Seconds) aFdP Temperature Display when no temperature compensation Unlit Selection item: aFF Unlit aFf Indication A1 output allocation R 1 f A1 output allocation A11 type R 1 f A1 type R 1 f A1 type R 2 f A2 type R 2 f A2 type R 2 f A2 type R 2 f A2 type R 2 f A2 type <th></th>	
$dl \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
RLL Conductivity Display Temperature Display RLL Conductivity Temperature $E c$ Conductivity No indication $F c$ Conductivity No indication $F c$ No indication Temperature $n c n E$ No indication Temperature $n c n E$ No indication No indication $f l \bar{n} E$ Indication time 00.00 Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $aF dP$ Temperature Display when Unlit $no temperature compensation Selection item: aF F aF f Unlit h c f f Reference temperature PB : Measured value A11 type R I a A1 output allocation A11 type R I d : A12 type R I d : A21 type R I d : A21 type R I d : A22 type $	
RLL Conductivity Display Temperature Display RLL Conductivity Temperature $E \in$ Conductivity No indication $E \in$ Conductivity No indication $F \in \overline{P}$ No indication Temperature $n \circ n \in$ No indication Temperature $n \circ n \in$ No indication No indication $f = \overline{P}$ No indication No indication $n \circ n \in$ No indication No indication $f = \overline{P}$ No indication No indication $f = \overline{P}$ No indication No indication $f = \overline{P}$ No indication No indication 0.00 Setting range: 00.00 (Remains lit) 00.00 0.01 to 60.00 (Minutes.Seconds) 0.01 to 60.00 (Minutes.Seconds) Selection item: $oF f$: Unlit Selection item: $oF f$: Unlit $SF d$: Reference temperature PH : Measured value $R ! oF$: Unlit Selection item: $R ! I$ A1 output allocation $R ! I = A11$ Selection item: $R ! I = A11$ PH R !	
Image: Selection item: $R I I \subseteq F$ Conductivity Display Temperature ConductivityTemperature Display 	
RLL Conductivity Temperature $E =$ Conductivity No indication $T \in \overline{AP}$ No indication Temperature $n = nE$ No indication Temperature $n = nE$ No indication Temperature $n = nE$ No indication No indication $n = nE$ No indication No indication $n = nE$ No indication No indication 00.00 Setting range: 00.00 (Remains lit) 00.00 00.01 to 60.00 (Minutes.Seconds) 00.01 to 60.00 (Minutes.Seconds) $aFdP$ Temperature Display when unit Unlit $no temperature compensation Selection item: aFF aFF : Unlit \neg f d : Reference temperature PB : Measured value A1 output allocation A11 type R I aF A1 output allocation A11 type R I I : A11 type R I I : A12 type R I I : A21 type R I I : A21 type R I I : A22 type : A22 type : A22 type $	
$E \subseteq \Box$ Conductivity No indication $\Gamma \subseteq \overline{AP}$ No indication Temperature $n \supseteq n \subseteq$ No indication No indication $n \supseteq n \subseteq$ No indication No indication $n \supseteq n \subseteq$ No indication No indication $n \supseteq n \in$ No indication No indication $n \supseteq n \in$ No indication No indication $\square \square \square$ Setting range: 00.00 (Remains lit) 00.00 $\square \square \square$ Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $\square F = D$ Temperature Display when is the intervence on the int	
$\Gamma \subseteq \overline{\cap P}$ No indicationTemperature $n \supseteq n \subseteq$ No indicationNo indication $n \supseteq n \in$ No indicationNo indication $n \supseteq n \in$ Indication time00.00 $D \square \square \square$ Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $\Box F d P$ Temperature Display when no temperature compensation Selection item: $\Box F f \subseteq$: Unlit $\neg f d \subseteq$: Reference temperature $P H \subseteq$: Measured value $R I \Box F$ A1 output allocation $R I I \subseteq$: A11 type $R I I \subseteq$: A21 type $R I Z \subseteq$: A22 type	
$\square \square \square E$ No indicationNo indication $\square \square \square E$ Indication time00.00 $\square \square \square D$ Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $\square F dP$ Temperature Display when no temperature compensation Selection item: $\square F F$: Unlit $\neg f d$: Reference temperature $P H$: Measured value $R I \square F$ A1 output allocation $R I I$: A11 type $R I I$: A11 type $R I I$: A12 type $R Z I$: A22 type	
$\Gamma I \ \overline{DE}$ Indication time 00.00 $\Box \Box \Box \Box$ Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $\Box F dP$ Temperature Display when Unlit $\Box F F \Box$ Temperature compensation Selection item: $\Box F F \Box$: Unlit $\neg \Gamma d$ $\Box F F \Box$: Unlit $\neg \Gamma d$ $\Box F F \Box$: Unlit $\neg \Gamma d$ $\Box F F \Box$: Unlit $\neg \Gamma d$ $\Box F F \Box$: Unlit $\neg \Gamma d$ $\neg F F \Box$: Unlit $\neg \Gamma d$ $\neg F F \Box$: Unlit $\neg \Gamma d$ $\neg F F \Box$: Unlit $\neg \Gamma d$ $\neg F F \Box$: Unlit $\neg \Gamma d$ $\neg F F \Box$: Unlit $\neg \Gamma d$ $\neg F d \Box$: Reference temperature $P H \Box$ $P H \Box$: Measured value A11 type $R \mid I \Box$: A11 type $R \mid I \Box$: A12 type $R \mid Z \subseteq$: A21 type $R \mid Z \subseteq$: A22 type	
$\square \square \square \square$ Setting range: 00.00 (Remains lit) 00.01 to 60.00 (Minutes.Seconds) $\square F dP$ Temperature Display when no temperature compensation Selection item: $\square F F$ Unlit $\square F F$ Image: New Year Problem Problem : Measured valueMain Problem Problem : Measured value $R ! \square F$ A1 output allocation $R ! \square H$ A11 type $R ! \square F$ Selection item: $R ! \square H$ A11 type $R ! \square F$ A1 output allocation $R ! \square H$ A11 type $R ! \square F$ A12 : A12 type $R \square H$ A12 type $R \square H$ $R ! \square H$ A12 type $R \square H$ A12 type $R \square H$	
00.01 to 60.00 (Minutes.Seconds) $\Box F dP$ $\Box FF$ $\Box FFF$ $\Box FFF$ $\Box FFFF$ $\Box FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$	
$\square F \square P$ Temperature Display when no temperature compensation Selection item: $\square F F \square$: Unlit $\neg f \square$: Reference temperature $P \square$: Measured valueUnlit $\square I \square F$ A1 output allocation Selection item: $\square I \square$: A11 typeA11 type $\square I \square$ Selection item: $\square I \square$: A11 type $\square I \square I \square$: A12 type $\square I \square I$	
$\square FF$ no temperature compensation Selection item: $\square FF$: Unlit $\neg f \square$ $\square FF$: Unlit $\neg f \square$: Reference temperature $P\square$ $\square FF$: Measured value $\square I\square$ Measured value $\square I\square$ Selection item: $\square I\square$ $\square I\square$ Selection item: $\square I\square$ $\square I\square$: A11 type $\square I\square$: A12 type $\square 2\square$ $\square R I\square$: A21 type $\square 2\square$ $\square R \square 2\square$: A22 type	
Selection item: $\square F F$ $\square F F$: Unlit $\neg f \square$: Reference temperature $P \square$: Measured value $R I \square$ Selection item: $R I \square$ Selection item: $R I \square$: A11 type $R I \square$: A12 type $R \square$ $R \square$: A21 type $R \square$: A22 type	
$\square FF$: Unlit $\neg f d$: Reference temperature PH : Measured value $R I \square F$ A1 output allocation $R I \square$ Selection item: $R I \square$: A11 type $R I \square$: A12 type $R 2 \square$: A21 type $R 2 \square$: A22 type	
$\neg f d$: Reference temperature $P H$: Measured value $R \mid aF$ A1 output allocation $R \mid I$ Selection item: $R \mid I$: A11 type $R \mid I$: A11 type $R \mid I$: A12 type $R \mid I$: A21 type $R \mid I$: A22 type	
PH : Measured value R IoF A1 output allocation A11 type R I I Selection item: A11 type R I I : A11 type A12 R I I : A12 type A12 R I I : A21 type A21 type	
R I GF A1 output allocation A11 type R I I Selection item: A11 type R I I : A11 type A12 R I I : A12 type A12 R I I : A12 type A21 type R I I : A21 type A22	
<i>R</i> / <i>I</i> □ Selection item: <i>R</i> / <i>I</i> □ <td: a11="" td="" type<=""> <i>R</i> / <i>I</i>□ <td: a12="" td="" type<=""> <i>R I</i> /□ <td: a21="" td="" type<=""> <i>R I I</i>□ <td: a21="" td="" type<=""> <i>R I I</i>□ <td: a21="" td="" type<=""> <i>R I I</i>□ <td: a22="" td="" type<=""></td:></td:></td:></td:></td:></td:>	
用 I I I II II III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
A 12□: A12 type A 1□: A21 type A 2 A 2 I 2	
₽2 /□: A21 type ₽22□: A22 type	
<i>R∂∂</i> ⊡ : A22 type	
RERL : A21, A22 types	
B : B : C: A21, A22 types B : B : C: A11, A21 types	
8282 : A12, A22 types	
BLL : A12, A22 types BLL : A11, A12, A21, A22 types	
BE I A2 output allocation A21 type Selection item: Same as those of A1 output allocation (p.90) A21 type	
Output ON time when A1 output is ON 0 seconds Setting range: 0 to 9999 seconds 0	
Setting range: 0 to 9999 seconds	
U Setting range: 0 to 9999 seconds DDFZ Output OFF time when A2 output is ON 0 seconds	
Setting range: 0 to 9999 seconds	
Bit A1 conductivity input error alarm A No action	
type	
Selection item:	
: No action	
<i>用 I I</i> ⊡ : A11 type	
<i>用 12</i> □ : A12 type	
<i>用己 I</i> □: A21 type	
<i>₽₽₽</i> □ : A22 type	

Character	Setting Item, Setting Range	Factory Default	Data
RZE	A2 conductivity input error alarm A	No action	
	type		
	Selection item:		
	: No action		
	<i>用 I I</i> ⊡ : A11 type		
	<i>用 12</i> □ : A12 type		
	<i>₽₽ /</i> □ : A21 type		
	<i>R⊇⊇</i> ⊡ : A22 type		
R IEo	A1 conductivity input error alarm band	0.00 mS/cm	
000	when A output ON		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
A lof	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output ON		4
	Setting range: 0 to 9999 seconds or minutes		
RIEC	A1 conductivity input error alarm band	0.00 mS/cm	
<i>000</i>	when A output OFF		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
R IcT	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output OFF		
	Setting range: 0 to 9999 seconds or minutes	S (*)	
<i>826</i> 0	A2 conductivity input error alarm band	0.00 mS/cm	
<i>00</i>	when A output ON		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
8205	A2 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output ON		
	Setting range: 0 to 9999 seconds or minutes	s (*)	
RZEc	A2 conductivity input error alarm band	0.00 mS/cm	
000	when A output OFF		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
RZcf	A2 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output OFF		
	Setting range: 0 to 9999 seconds or minutes	S (*)	
~_ <u>-</u> <u>-</u> <u>-</u>	Conductivity input error alarm time unit	Second(s)	
5Ec[]	Selection item:]
	らたこ: Second(s)		
	āi ā⊟ : Minute(s)		

(*) The time unit depends on the selection in [Conductivity input error alarm time unit].

***** Inquiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.

[Example]

• Model ----- WIL-102-ECH

Serial number ----- No. 195F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: [URL] [E-mail]

2-5-1, Senbahigashi, Minoo, Osaka, 562-0035, Japan

https://shinko-technos.co.jp/e/ overseas@shinko-technos.co.jp Tel: +81-72-727-6100 Fax: +81-72-727-7006